RTD and Thermocouple Assemblies Reference Manual
Mounting and Installation Advice for Resistance Thermometers and Thermocouple Assemblies

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

For further details please contact your local Rosemount representative.

CAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Emerson Process Management Sales Representative.
Table of Contents

SECTION 1
Introduction
- How to Use this Manual: 1-1
- Safety Messages: 1-1

SECTION 2
Temperature Measurement with Resistance Thermometers
- Description and Measuring Principle: 2-1
- Structure: 2-1
- Methods of Connection: 2-3
- Areas of Application: 2-4

SECTION 3
Temperature Measurement with Thermocouples
- Description and Measurement Principle: 3-1
- Installation of Protective Tubes: 3-3
- Leads and Connections: 3-3
- Areas of Application: 3-3

SECTION 4
Assembly of Housing
- Rules and Instructions: 4-1
 - Stress: 4-1
 - Torque: 4-1
 - Housing Assembly: 4-1
 - Ceramic Housing Installation: 4-2
 - Connection of Transmitters: 4-2

APPENDIX A
Limit Tolerances of the Basic Values

APPENDIX B
Limit tolerances for Thermocouples
Section 1 Introduction

HOW TO USE THIS MANUAL

This manual provides installation, configuration, troubleshooting, and other procedures for the use of the Rosemount 1075 Series. Specifications and other important information are also included.

Section 2: Temperature Measurement with Resistance Thermometers
Contains information on description and measuring principle, structure, methods of connection and areas of application.

Section 3: Temperature Measurement with Thermocouples
Contains information on description and measurement principle, installation of protective tubes, leads and connections, and areas of application.

Section 4: Assembly of Housing
Contains information on rules and regulations for the Rosemount 1075 Series.

Appendix A: Limit Tolerances of Basic Values
Provides a chart with the limit tolerances of the basic values according to DIN IEC 751 and DIN 43760.

Appendix B: Limit Tolerances for Thermocouples
Provides a chart for limit tolerances for thermocouples according to DIN IEC 584-2.

SAFETY MESSAGES

Procedures and instructions in this manual may require special precautions to ensure the safety of the personnel performing the operations. Refer to the safety messages, listed at the beginning of each section, before performing any operations.
RTD and Thermocouple
Section 2 Temperature Measurement with Resistance Thermometers

Description and Measuring Principle

Temperature measurement with resistance thermometers is based on the property possessed by all conductors and semiconductors, namely that their resistance varies as a function of temperature. This property is more or less pronounced, depending on the particular material. The relative change in the resistance as a function of temperature (dR/dt) is known as the temperature coefficient, the value of which is usually not constant over the range of temperature of interest, but is itself a function of temperature. The result is that the mathematical relationship between resistance and temperature takes the form of a high-order polynomial.

Figure 2-1 shows the change in resistance as a function of temperature for a Pt 100 resistance thermometer.

STRUCTURE

The resistance temperature detector is made up of a platinum coil wound on a suitable support. The wire coil is either fused into glass or embedded in ceramic. To meet today’s requirements for more compact dimensions and higher resistance values, extremely thin platinum layers are applied to a ceramic substrate instead of wires (see Figure 2-2).
To protect them against mechanical damage (pressure of flowing liquid) these measuring elements are usually installed into suitable protective tubes (measuring inserts). This also ensures easy replacement without the need to replace the complete fitting. As resistance thermometers are contact-making temperature sensors (i.e. the sensor has to reach the temperature of the medium in which measurement is to be performed) the housing has to be adapted to the application (see Figure 2-3).
When using resistance thermometers for temperature measurement, the fact that the measurement result is influenced by the resistance of the selected lead wire must be taken into account.

Three circuit types are commonly used: 2-wire, 3-wire, and 4-wire circuits.

The most accurate measurements are obtained with the 4-wire circuit, as in this case the measurement is not affected by lead wire resistance or environment temperature of lead wires (see Figure 2-4).

The 3-wire circuit is normally used for eliminating the lead wire resistance (Wheatstone bridge).

In the case of the 2-wire circuit, the lead wire resistance is fully measured by the measuring bridge. By the use of modern control equipment the influence of the lead wire resistance at 2-wire circuit can be compensated by a line compensation resistor, which is independent of temperature.
Resistance thermometers can be used over a temperature range of -220 °C to +600 °C.

Their **advantages** are:
- High temperature ranges
- Resistance to vibration
- High immunity to electrical interference
- Long-term stability
- Robust design
- High accuracy

Resistance thermometers are used in the following **industries**:
- Chemical industries
- Petrochemical industries
- Pharmaceutical industries
- Power generation
- Mechanical engineering
- Food & beverage
- Mining
Section 3 Temperature Measurement with Thermocouples

Description and Measurement Principle page 3-1
Installation of Protective Tubes .. page 3-3
Leads and Connections ... page 3-3
Areas of Application ... page 3-3

DESCRIPTION AND MEASUREMENT PRINCIPLE

A thermocouple consists of two electrical conductors of different materials connected to one another at one end (measuring junction). The two free ends build a compensation point resp reference junction. The thermocouple can be extended by using an extension or a compensating cable. The extension or compensating cables are connected to a measuring instrument, e.g. a galvanometer or electronic measuring unit (see Figure 3-1).

Figure 3-1.

![Diagram of thermocouple components](image)

Reference junction
Extension/compensating cable
Connection point
Measuring junction

The thermoelectric voltage appearing at the reference junction depends on the thermocouple wire material and on the temperature difference between the measuring junction and the reference junction. For temperature measurement, the temperature of the reference junction must be kept constant (e.g. 0°C) or must be well known, to make an appropriate correction in mV (see Figure 3-2).
Figure 3-2.

Extension cables are manufactured of the same material as the corresponding thermocouple, e.g. Cu-CuNi, Fe-CuNi. Compensating cables are manufactured of special materials.

Up to 200 °C compensating cables supply the same thermoelectric voltage as the thermocouples to which they are connected. The thermoelectric voltages of the thermocouples are laid down in so-called basic value series.

- **e.g.**
 - PtRh30%-PtRh6% Type B
 - Fe-CuNi Type J
 - NiCr-NiAl Type J
 - PtRh87/13%-Pt Type R
 - PtRh90/10%-Pt Type S
 - and others in DIN IEC 584-1

- **and**
 - Fe-CuNi Type L
 - Cu0CuNi Type U

These thermocouples are not more available for use in new plants (thermoelectric voltage according to DIN 43710) Basic value tables are available on request only at manufacturer site.

The compensating cable for a thermocouple must be made of a material to suit the particular type of thermocouple, so compensating leads are color-coded. For standardized compensating cable the regulations contained in DIN EN 60584 apply.

Maximum temperatures indicated by manufacturer have to be considered.

Most thermocouples are supplied ready for operation, that is in a protective mounting to prevent damage to the thermocouple by mechanical forces or chemical attack.
INSTALLATION OF PROTECTIVE TUBES

The protective tubes of thermocouples must be adapted to the particular operating conditions. Precious metal thermocouples are always protected with a ceramic tube, even if the unit has a metallic protective mounting.

At high temperatures the protective tubes should be installed vertically, where possible, i.e. suspended, to avoid damage deflection to the protective tube and thermocouple through bending. If specific conditions on site make a horizontal installation unavoidable, long protective tubes have to be suitably supported.

LEADS AND CONNECTIONS

When laying and connecting extension resp. compensating cables, care must be taken to connect the positive pole of the thermocouple to the positive terminal of the indicating instrument. If extension cables or compensating cables are used, care must be taken not to interchange positive and negative conductors. To prevent errors, the positive and negative leads bear a corresponding marking.

All connections must be absolutely clean and firmly tightened. The corresponding positive and negative terminals should have the same temperature potential.

The compensating cables between the thermocouple and the indicating instrument should comply with the requirements for insulated leads in power systems (VDE 0250). In exceptional cases, the regulations for insulated leads in telecommunications systems (VDE 0810) may be applied.

AREAS OF APPLICATION

In the negative temperature range, thermocouples can be used down to -200 °C. For temperatures above 1000 °C, thermocouples made of platinum and a platinum/rhodium alloys are used.

Advantages of thermocouples are:
- Very high temperature ranges
- Fast response
- Compact design
- Extremely high resistance to vibration
- Long term stability
- Robust design

Thermocouples are used in the following, and other, **industries**:
- Chemical industries
- Pharmaceutical industries
- Power generation
- Mechanical engineering
- Food & beverage
- Mining
- Iron and steel
- Ceramics and glass
Section 4 Assembly of Housing

RULES AND INSTRUCTIONS

For housing assembly, please use the following instructions.

VDE/VDI 3511
Technical temperature measurement/instruction

VDE/VDI 3512
Set-up for temperature measurements

AD - instruction leaflets\(^{(1)}\)
Working group pressure vessels

TRB - technical directions for tank construction\(^{(1)}\)

Vd - TDV regulations\(^{(1)}\)

Stress

The stresses indicated in the drawing apply to the supplied housing. The load data, included in the standards for every type, are valid for housing according to DIN 43763 and DIN 43772.

Torque

Starting torques for screw-in type threads

Applicable to screw-in type threads according to DIN 43763 and DIN 43772 as well as comparable housing according to customer’s specifications.

\[\begin{align*}
G \frac{3}{8}, G \frac{1}{2} & : 50 \text{ Nm} \\
G \frac{3}{4} & : 100 \text{ Nm}
\end{align*} \]

Above starting torques are to be used as well for coupling rings with similar threads.

Housing Assembly

Assembly of housing with flange mounting

The seal is to be selected according to the requirements. During insertion of the seal, a good support is necessary. Fastening screws are to be tightened evenly and crosswise.

\(^{(1)}\) To be considered in case of weld-in type tubes. Material, weld and pressure test according to operating conditions
Ceramic Housing Installation

Installation of ceramic housing in plants at operating temperature

Temperature of the plant:

- 1600 °C insertion speed: 1-2 cm/min.
- 1200 °C insertion speed: 10-20 cm/min.

Connection of Transmitters

When connecting transmitter, the installation-, connection, and test instructions of the manufacturers are to be considered.
Appendix A Limit Tolerances of the Basic Values

Table A-1. Limit tolerances of the basic values according to DIN IEC 751 and DIN 43760

<table>
<thead>
<tr>
<th>°C</th>
<th>Basic values</th>
<th>Limit tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>According to DIN IEC 751 Platinum RTD-elements</td>
<td>According to DIN IEC 751 Nickel RTD-elements</td>
</tr>
<tr>
<td>-200</td>
<td>18.49</td>
<td>0.44</td>
</tr>
<tr>
<td>-100</td>
<td>60.25</td>
<td>0.41</td>
</tr>
<tr>
<td>0</td>
<td>100.0</td>
<td>0.39</td>
</tr>
<tr>
<td>100</td>
<td>138.5</td>
<td>0.38</td>
</tr>
<tr>
<td>200</td>
<td>175.84</td>
<td>0.37</td>
</tr>
<tr>
<td>250</td>
<td>289.2</td>
<td>1.04</td>
</tr>
<tr>
<td>300</td>
<td>212.02</td>
<td>0.35</td>
</tr>
<tr>
<td>400</td>
<td>247.04</td>
<td>0.34</td>
</tr>
<tr>
<td>500</td>
<td>280.90</td>
<td>0.33</td>
</tr>
<tr>
<td>600</td>
<td>313.59</td>
<td>0.33</td>
</tr>
<tr>
<td>700</td>
<td>345.13</td>
<td>0.31</td>
</tr>
<tr>
<td>800</td>
<td>375.71</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Appendix B Limit tolerances for Thermocouples

Table B-1. Limit tolerances for thermocouples according DIN IEC 584-2

<table>
<thead>
<tr>
<th>Class</th>
<th>1</th>
<th>2</th>
<th>3 (^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit tolerances (^{(2)}) (a)</td>
<td>0.5 °C or 0.004 x</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>Type T</td>
<td>-40 °C up to 350 °C</td>
<td>-40 °C up to 350 °C</td>
<td>-200 °C up to 40 °C</td>
</tr>
<tr>
<td>Limit tolerances (^{(2)}) (±)</td>
<td>1.5 °C or 0.004 x</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>Type E</td>
<td>-40 °C up to 800 °C</td>
<td>-40 °C up to 900 °C</td>
<td>-200 °C up to 40 °C</td>
</tr>
<tr>
<td>Type J</td>
<td>-40 °C up to 750 °C</td>
<td>-40 °C up to 750 °C</td>
<td>--</td>
</tr>
<tr>
<td>Type K</td>
<td>-40 °C up to 1000 °C</td>
<td>-40 °C up to 1200 °C</td>
<td>-200 °C up to 40 °C</td>
</tr>
<tr>
<td>Limit tolerances (^{(2)}) (±)</td>
<td>1 °C or ([1+9</td>
<td>t</td>
<td>-1100] \times 0.003) °C</td>
</tr>
<tr>
<td>Type R and S</td>
<td>0 °C up to 1600 °C</td>
<td>0 °C up to 1600 °C</td>
<td>--</td>
</tr>
<tr>
<td>Type B</td>
<td>--</td>
<td>600 °C up to 1700 °C</td>
<td>600 °C up to 1700 °C</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Thermocouples and thermocouple wires are usually supplied with limited tolerances according to the table above valid for temperature range above of -40 °C. The thermocouple limit tolerances of same material at temperatures below -40 °C may be exceeded as stated for tolerance class 3 according to DIN IEC 584-2. Thermocouples requested by purchaser with limit tolerances according to classes 1, 2, or 3 may be obtained by special material selection.

\(^{(2)}\) Limit tolerances for thermocouples are indicated in degrees centigrade or as percentage of the measured temperature in degrees centigrade. Whichever value is greater applies.

|t| = Temperature in degrees Centigrade
Index

Numerics
- 2-wire circuit 2-3
- 3-wire circuit 2-3
- 4-wire circuits 2-3

A
- accuracy 2-4
- AD - instruction leaflets 4-1

B
- basic values A-1

C
- ceramic 2-1
- ceramic substrate 2-1
- ceramic tube 3-3
- chemical attack 3-2
- color-coded 3-2
- compact dimensions 2-1
- compensating cable 3-1
- Compensating cables 3-2
- compensating leads 3-2
- conductors 2-1, 3-1
- Considerations 2-2
 - Environmental 2-4
- contact-making temperature sensors 2-2
- coupling rings 4-1

D
- design 2-4, 3-3
- DIN 43763 4-1
- DIN 43772 4-1
- DIN EN 60584 3-2
- DIN IEC 584-2 B-1

E
- electrical interference 2-4
- electronic measuring unit 3-1
- Environmental Considerations ... 2-4
- Extension cables 3-2

F
- Fastening screws 4-1
- function of temperature 2-1

G
- galvanometer 3-1
- glass 2-1

H
- hermoelectric voltage 3-2
- higher resistance values 2-1
- horizontal installation 3-3
- housing assembly 4-1

I
- immunity 2-4
- independent of temperature 2-3
- installed vertically 3-3

L
- Limit tolerances A-1, B-1
- load data 4-1

M
- Maximum temperature 3-2
- measurement result 2-3
- measuring bridge 2-3
- measuring elements 2-2
- measuring junction 3-1
- Measuring Principle 2-1
- mechanical damage 2-2
- mechanical forces 3-2
- metallic protective mounting 3-3
- mV 3-1

N
- negative conductor 3-3
- negative lead 3-3

P
- platinum 2-1
- platinum coil wound 2-1
- platinum thermocouples 3-3
- platinum/rhodium alloys 3-3
- positive lead 3-3
- positive pole 3-3
- positive terminal 3-3
- Precious metal thermocouples 3-3
- protective mounting 3-2
- protective tubes 2-2
- Pt 100 resistance thermometer ... 2-1

R
- reference junction 3-1
- replacement 2-2
- Resistance 2-4
- resistance 2-3
- resistance temperature detector 2-1
- Resistance thermometer modules 2-2
- resistance thermometers 2-1, 2-2
- response 3-3

S
- screw-in type threads 4-1
- seal 4-1
- semiconductors 2-1
- Specifications
 - HART and Foundation Fieldbus A-1
- stability 2-4, 3-3
- standards 4-1
- support 3-3

T
- Temperature 2-1
- temperature coefficient 2-1
- Temperature Measurement 3-1
- Temperature measurement 2-1
- temperature potential 3-3
- temperature range 2-4
- thermocouple 3-1
- thermocouple, 3-2
- Thermocouples 3-1
- TRB - technical directions for tank construction 4-1

V
- Vd - TDV regulations 4-1
- VDE/VDI 3511 4-1
- VDE/VDI 3512 4-1
- vibration 3-3
- voltage 3-1

W
- wire material 3-1