Optimizing Catalyst Regeneration With An In Situ Oxygen Probe

BACKGROUND
Catalytic crackers have long been utilized to extract additional gasoline from heavier components resulting from the distillation process. The distillation process is the physical separation of a MIXTURE of different molecules, based upon the different boiling points of these molecules. The catalytic cracking process splits larger hydrocarbon molecules into lighter components using a catalyst, which aids the reaction or "cracking" process. The cracking process produces carbon, or coke, which remains on the catalyst particle, reducing its effectiveness over time.

CATALYST REGENERATION
Spent catalyst is continuously routed from the reactor to a "regenerator". Oil remaining on the surface of the catalyst is stripped off with steam or solvent. The catalyst is then sent to the regenerator, where air is introduced to burn the coke off the catalyst.

There are many different variations in the regeneration process, and there are several applications where the in situ zirconium oxide probe works well.

TRADITIONAL COMBUSTION FLUE GAS APPLICATIONS
Oxygen is measured in the flue gas resulting from the coke burn-off to assist in maintaining the most efficient fuel/air ratios. Some catalytic regenerators generate CO gas, and route this to a separate CO boiler (figure 1), while other units complete the combustion process within the regenerator (figure 2). In either case, the O2 analyzer is placed in the flue gas ductwork exiting the unit, or in the stack.

OXYGEN ENRICHMENT IMPROVES THROUGHPUT (see figure 1)
Enriching the air used in the regeneration process can increase the coke burn-off rate. Many refineries will mix pure oxygen with the air used for regeneration, resulting in a mixture of 21 to 25% O2, which increases the efficiency of the regeneration process. This oxygen measurement can be used for operator information, alarming, or automatic control of the oxygen injection valve (see figure 1).

Pressures are normally 35PSI, so the probe must be pressure-balanced with reference air (see reverse side).
CONTINUOUS CATALYTIC REGENERATOR (CCR)

Utilized with a "moving bed" process, the CCR utilizes a regeneration gas loop to control temperature and O₂ levels in the regenerator "burn zone". This recirculation loop heats or cools the combustion flue gas resulting from the regeneration process to control temperature, and air is also controlled to an optimum point (see figure 3). The O₂ measurement is critical to maintaining optimum rate of regeneration, and for preventing thermal damage inside the burn zone.

Process pressures may be close to atmospheric, or pressurized to app. 35 PSI. Pressure balancing may be required, and an isolation valving system may be needed if probe insertion or withdrawal is required with the process on-line. Pressure balancing will adjust to pressure variations, while traditional O₂ systems place a fixed compensation into the electronics.

Chlorine is injected into this unit, and a special HCL-resistant cell is required.

PRESSURE BALANCED O₂ PROBE

Most in situ oxygen analyzers utilize zirconium oxide sensing technology, which is sensitive to pressure variations in the process. An output change of approximately 1% of reading (not 1% FS, or 1% O₂) can be expected for every 4 in. of H₂O pressure in the process. Special accommodation must be made to balance the process pressure with the inside of the oxygen probe. Rosemount Analytical has a special probe design that balances the inside of the probe to the same pressure as the process. A sealed probe is used along with a "booster relay" which duplicates the pressure of the process with the instrument air being used as a reference gas (see figure 4).

For accurate, reliable oxygen analysis, Rosemount Analytical offers the Oxymitter 4000 with integral electronics, and the World Class 3000 with slip architecture electronics. The user-friendly design of the World Class 3000 probe allows convenient access to internal probe components for in-house service. In addition, Rosemount Analytical's patented electronic cell protection automatically protects the sensor cell's electrodes from harmful corrosive gases. And, the HART® Field Communications Protocol permits all operator functions to be performed from the control room.

For applications in hazardous areas, an explosion proof version of the World Class Probe and electronics is available with CENELEC certification.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

Emerson Process Management
Rosemount Analytical Inc.
Process Analytic Division
1201 North Main Street
P. O. Box 901
Orrville, OH 44667-0901 USA
T 330.682.9010
Toll Free in US and Canada 800.433.6076
F 330.684.4434
e-mail: gas.csc@EmersonProcess.com
www.processanalytic.com

© Rosemount Analytical Inc., 2003. All rights reserved.
Printed in U.S.A. on recycled paper.