Fisher® Superheater and Reheater Attemperator Solutions
Application Discussion

As with any superheated steam cycle, the temperature of the superheat needs to be controlled to ensure that it does not exceed the material limits of the steam turbine and boiler. Temperature control is accomplished by use of an attemperator or desuperheater that injects a controlled amount of cooling water into the superheated steam flow.

There are two types of attemperation systems in power plants: superheat attemperation and reheat attemperation. Superheat attemperation occurs in the superheater section prior to steam introduction into the high-pressure steam turbine. Reheat is applied to steam that is exhausted from the high-pressure turbine. The steam is sent through the boiler again to gain more heat before being admitted into the IP/LP turbine.

Attemperator spray water flow is regulated by an external control valve. For proper temperature control, the spray water valve must react quickly to downstream temperature variations, and at low flows, provide the rangeability needed to handle multiple operating loads. Critical performance criteria are:

- Accurate control at low flow and wide rangeability to maintain superheater outlet temperature
- Adequate seat load to prevent leakage during plant startup
- Fast-acting response to steam temperature changes

The reheat attemperator uses water from the main boiler feedwater line to control reheat steam temperature. Because the spray water is taken from the main feedwater line and the cold reheat is at a much lower pressure than high pressure steam, cavitation concerns arise, in addition to those above.

Emerson offers specific Fisher-engineered solutions for variations in plant design for both superheat and reheat attemporators. These solutions offer protection from cavitation, erosion, plugging and leakage while providing high rangeability. The reheat attemperator spray valve in particular can be exposed to the potential for cavitation. Cavitation formation is eliminated by unique pressure control of flow through the valve. Also, since these valves can be exposed to full pump pressure during plant startup, tight shutoff (ANSI Class V or greater) is critical. Any leakage can have an effect on steam temperature, which in turn affects heat rate and efficiency along with potentially causing valve trim damage.

To ensure proper operation after installation, a Fisher FIELDVUE® Digital Valve Controller can be used to monitor valve performance. The FIELDVUE DVC provides diagnostic reviews without interrupting the process in order to identify potential performance issues. This helps to ensure proper operation and tight shutoff over the normal service life of the valve.
Severe Service Control Hierarchy

Superheater & Reheater Attemperator Spray — Control Valve Solutions

FISHER CUSTOMIZATION

Original valves in a supercritical power plant experienced repeated packing failures and trim erosion. Replacements using Fisher customized valve plugs and drilled-hole cages provide the required high turndown and also prevent the valves from continually operating near the seat, thereby eliminating trim erosion. Packing failure was solved by using Fisher High-Seal™ live-loaded packing. See D351191X012 at www.Fishersevereservice.com for additional details.

FISHER OPTIMIZATION

itable Reheater Attemperator Spray
Cavitrol® III,
Micro-Flat™ Trim

- Eliminates cavitation at higher flow rates
- Prevents cavitation damage to the valve seat at low flow conditions
- Maintains Class V shutoff capability
- Standard hardened trim materials provide excellent wear resistance

BASIC TECHNOLOGY

- Standard trim control valve
- Trims designed for low-flow control
- Hardened trim materials to extend service life
- Angle valves to extend body life
- Tight shutoff construction
Emerson. Your partner in instrument and valve reliability.
The way you manage your key production assets directly affects your plant’s performance and profitability. Emerson’s Asset Optimization capabilities deliver world-class services and innovative technologies to increase the availability and performance of mechanical equipment, electrical systems, process equipment, instruments and valves for improved bottom-line results. Asset Optimization helps you improve process availability and attain peak performance, which means wherever you are in your plant’s life cycle—startup, maximizing operations or life extension—by relying on Emerson’s Asset Optimization capabilities, you’ll be on the path to realizing the true potential of your plant’s instruments and valves.

The Next Step
Contact your local Emerson Process Management sales office or sales representative location for more information or to make a purchase.

For severe service solutions, see us at www.FisherSevereService.com

© Fisher Controls International LLC 2006 All Rights Reserved

Fisher, FIELDVUE, Cavitrol, Micro-Flat and Micro-Form are marks owned by one of the companies in the Emerson Process Management business division of Emerson Electric Co. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy they are not to be construed as warranties or guarantees, expressed or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice. Fisher does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Fisher product remains solely with the purchaser.