MVS205 Multi-Variable Sensor

The MVS205 Multi-Variable Sensor (MVS205R) provides static pressure, differential pressure, and process temperature inputs to a ROC800-Series, FloBoss™ 107, ROC300-Series, FloBoss 407, or FloBoss 500-Series Flow Manager. The inputs from an MVS205 transmitter are used for differential pressure type calculations. The MVS205 typically operates as a remote device that communicates via a serial format.

Variables
Functionally, the MVS205 is a digital transmitter that measures three flow-related variables simultaneously: differential pressure, static pressure, and temperature. These variables are continuously available to the FloBoss or ROC unit that polls the MVS205.

An external three or four-wire Resistance Temperature Detector (RTD) senses the process temperature. The RTD sensor connects directly to the interface circuit board of the MVS205 transmitter. Connection requires user-supplied RTD field wiring.

Transducer and Interface Circuit
The MVS205 contains a transducer and an interface circuit. The transducer, contained in the sensor body, uses capacitance-cell technology to sense differential pressure and piezoresistive technology to sense the static (absolute or gauge) pressure.

The transducer electronics convert the pressure variables directly into a digital format, allowing accurate correction and compensation. A microprocessor linearizes and corrects the raw pressure signals (from the sensor) using characterization data stored in non-volatile memory.

The interface circuit, contained in the electronics head, converts the raw temperature from an RTD into digital format. The interface circuit also allows the MVS205 to communicate the digital pressure signals to a ROC or FloBoss using a serial EIA-485 (RS-485) connection. An explosion-proof electronics head encloses the interface circuit board.

Note: The MVS205 has a 10-pin terminal block that allows case isolation. For more information, refer to MVS205 Case Isolation Installation Sheet (Form A6277).

Accuracy
Two versions of the pressure transducer used in the MVS205 transmitter are available:
- 205P with reference accuracy of 0.075% of the full span.
- 205E with reference accuracy of 0.10% of the full span.

Mounting
Attached to the bottom of the sensor body is a Coplanar™ flange. This flange, which provides drain and vent valves, allows the MVS205 to mount on a pipestand, on a wall or panel, or on an integral orifice assembly or manifold valve.

Note: CE marked assemblies come with cover clamps installed on both ends of the MVS205 to comply with ATEX and IECEx.
MVS205 Multi-Variable Sensor

Differential Pressure Input

<table>
<thead>
<tr>
<th>Range</th>
<th>Range1</th>
<th>Reference Accuracy</th>
<th>Turndowns from 1:1 to 10:1 of URL</th>
<th>Turndowns from 10:1 to 100:1 of URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 62.2 kPa (0 to 250" H2O)</td>
<td>±0.10% of span</td>
<td>205E (10:1 rangeability allowed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 248.8 kPa (0 to 1000" H2O)</td>
<td>205P (100:1 rangeability allowed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±0.075% of span</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±(0.025 + 0.005(URL/Span))% of span</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stability

±0.125% of URL for five years, with up to ±50°F (28°C) ambient temperature changes and up to 1000 psi (68,9 bar) line pressure

Ambient Temperature Effect per 50°F (28°C)

Spans from 1:1 to 30:1 ±(0.025% URL + 0.125% of span)

Spans from 30:1 to 100:1 ±(0.035% URL + 0.175% of span)

Static Pressure Effects

Zero error ±0.05% of URL per 1000 psi (68,9 bar)

Span error ±0.20% of DP Reading per 1000 psi (68,9 bar)

Over-Pressure Limit

3,626 psi (250 bar) applied on either or both sides without damage to the sensor

Burst Pressure Limit

10,065 psi (694 bar)

Static Pressure Input

Range

Either Absolute or Gauge:

- 0 to 5516 kPa (0 to 800 psia/psig)
- 0 to 25,000 kPa (0 to 3626 psia/psig)

Reference Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Reference Accuracy</th>
<th>Turndowns from 1:1 to 10:1 of URL</th>
<th>Turndowns from 10:1 to 100:1 of URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5516 kPa (0 to 800 psia/psig)</td>
<td>±0.10% of span</td>
<td>205E (10:1 rangeability allowed)</td>
<td></td>
</tr>
<tr>
<td>0 to 25,000 kPa (0 to 3626 psia/psig)</td>
<td>±0.075% of span</td>
<td>205P (100:1 rangeability allowed)</td>
<td></td>
</tr>
<tr>
<td>±(0.03 + 0.0075(URL/Span))% of span</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stability

±0.125% of URL for five years, with up to ±50°F (28°C) ambient temperature changes

Ambient Temperature Effect per 50°F (28°C)

Spans from 1:1 to 30:1 ±(0.05% URL + 0.125% of span)

Spans from 30:1 to 100:1 ±(0.06% URL + 0.175% of span)

Over-Pressure Limit

Same as URL

Process Temperature Input

Type

For 3- or 4-wire platinum 100-ohm RTD (conforming to IEC 751 Class B), with \(\alpha = 0.00385 \)

Range

-40 to 400°C (–40 to 752°F)

1. Consult factory for special ranges and materials which may be available. For example, 0 to 6.22 kPa (0 to 25" H2O) at ±0.10% reference accuracy.
Technical Specifications

Reference Accuracy

<table>
<thead>
<tr>
<th>±0.28°C (±0.5°F), exclusive of RTD sensor error.</th>
</tr>
</thead>
</table>

Note: Includes linearity, hysteresis, and repeatability effects.

Excitation Current

<table>
<thead>
<tr>
<th>1.24 mA</th>
</tr>
</thead>
</table>

Output

<table>
<thead>
<tr>
<th>EIA-485 (RS-485)</th>
<th>Asynchronous serial communication using Modbus protocol for up to 605 m (2000 ft) distance</th>
</tr>
</thead>
</table>

Power

<table>
<thead>
<tr>
<th>Input at 0 to 75°C (32 to 167°F)</th>
<th>8 to 30 Vdc, 200 mW average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input at –40 to 0°C (–40 to 32°F)</td>
<td>8.5 to 30 Vdc, 200 mW average</td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>147 mm H by 163 mm W by 84 mm D (5.8 in. H by 6.4 in. W by 3.3 in. D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>3.0 kg (6.7 lb), including head</td>
</tr>
<tr>
<td>Vibration Effect</td>
<td>Sensor outputs shall not shift more than +0.1% of upper range limit per g from 5 to 2000 Hz in any axis when tested per IEC 770, Section 6.2.14.</td>
</tr>
<tr>
<td>Construction</td>
<td>Standard: Transducer is all stainless steel construction with silicone fill fluid, 316L diaphragms and glass-filled PTFE o-rings. Electronics head is A360 Aluminum with urethane coating.</td>
</tr>
<tr>
<td>Optional</td>
<td>Transducer includes Hastelloy C-276 wetted parts (construction is NACE compliant per MR0103 and ISO15156/MR0175), inert fill fluid</td>
</tr>
<tr>
<td>Mounting</td>
<td>Pipestand: Mounts on 50 mm (2 in.) pipe with U-bolt and optional flange bracket</td>
</tr>
<tr>
<td>Wall or Panel</td>
<td>Mounts with optional flange bracket, bolted on 71 mm (2.8 in.) centers</td>
</tr>
<tr>
<td>Connections</td>
<td>Conduit: Head has two 1/2-inch NPT connections</td>
</tr>
<tr>
<td>Process</td>
<td>1/4-18 NPT on 2-1/8 inch centers (on coplanar flange)</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>–40 to 75°C (–40 to 167°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>–50 to 100°C (–58 to 230°F)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>0 to 99%, non-condensing</td>
</tr>
<tr>
<td>Process Seals per ANSI/ISA 12.27.01</td>
<td>Meets requirements for a Single Seal device as defined by ANSI/ISA 12.27.01. Installation must adhere to the following process temperature limits.</td>
</tr>
<tr>
<td>Process Temperature (at transmitter isolator flange)</td>
<td>Standard Silicone Fill Sensor: –40 to 100°C (–40 to 212°F)</td>
</tr>
<tr>
<td>Inert Fill Sensor</td>
<td>–18 to 85°C (0 to 185°F)</td>
</tr>
</tbody>
</table>

Note: Process temperatures above 85°C (185°F) require you to lower the product’s maximum ambient temperature rating by a 1.5:1 ratio. To determine the adjusted maximum temperature rating, perform the following calculation:

\[
\text{Adjusted max Tamb} = \text{Product Max Tamb} - \left(\left[(\text{Actual Process Tamb} - 85°C (185°F)) \times 1.5\right]\right)
\]

Example: Adjusted Max Tamb = 75°C – [(95°C – 85°C) * 1.5] = 60°C.
Approvals

Product Markings for Hazardous Locations
- **CSA C/US:** Class I, Division 1, Groups C and D.
- Class I, Division 2, Groups A, B, C, and D, T5 (Tamb=70°C [158°F]), T4 (Tamb=75°C [167°F]), Type 4X.
- **CE Marked:** Ex d IIB T5 (Tamb=75°C)
- Ex tD A21 IP66 T85°C

Approval Standards
- **CSA/UL:** CSA C22.2 No. 30
- CSA C22.2 No. 213
- UL 1203, UL 1604
- ANSI/ISA 12.27.01-2003

EMC
- EN 61000-4-2 (2001)
- EN 61000-4-3 (2002)
- EN 61000-4-4 (1995)
- EN 61000-4-5 (2001)
- EN61000-4-6 (2003)

ATEX
- EN 60079-0 (2006)
- EN 60079-1 (2007)
- EN 61241-0 (2004)
- EN 61241-1 (2006)

IECEx
- EN 60079–0 (2004 Edition 4)
- EN 61241–0 (2004 Edition 1)
- EN 61241–1 (2004 Edition 1)
- EN 60529 (2001)

Measurement (Industry) Canada
- Approved for use with approved flow computers. Approved as MVS205R Series Remote Sensors (Measurement Canada approval #AG-0412).

Miscellaneous Approval Certificates
- **Canadian Registration to Category ‘F’ Fittings**

Note: Applies to all Canadian provinces and territories.