

SERIES 9200, 9100, 5300 AND BPR

Self-contained, low maintenance and reliable automatic recirculation control (ARC) valves engineered to protect centrifugal pumps against thermal damage and destruction

FEATURES

- Precise recirculation control.
- Stable design.
- Integral check valve.
- Low maintenance.
- Self-operating.
- Ease of installation.
- Suitable for all fluids.
- Dampening of pulsations.
- Multistage pressure letdown.
- Cavitation prevention.
- Eliminate external power sources or signals.
- Reliable performance.

GENERAL APPLICATION

The Automatic Recirculation Control (ARC) valve is a self contained, low maintenance and reliable device, engineered to protect centrifugal pumps against thermal damage and destruction. With a track record of more than 40 years, Yarway ARC valves have provided customers with a peace of mind knowing that their pumps are protected during low flow events.

TECHNICAL DATA

Materials:	Carbon steel, stainless
	steel, 6Mo, super duplex,
	NACE
Sizes:	1" to 14" (DN 25 to 350)
Temperature range:	-100° to 550°F
	(-73° to 287°C)
Pressure ratings:	ANSI B16.34 Class 150
	to 2500

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) SERIES 9200, 9100, 5300 AND BPR

CONTENTS

Emerson valve services	
Testing laboratory	
ARC sizing data sheet	
Back pressure regulator (BPR)	
Series 9200, 9100 and 5300	
Model numbering	
series 5300	
Series 9200 and 9100	
Flow test report sample	
Back pressure regulator (BPR)	
Series 5300	
Series 9100	
Series 9200	
Dimensions and weights	
Back pressure regulator (BPR)	
Series 5300	
Series 9100	
Ordering - parts and materials Series 9200	
Sizing program	16
Material selection	
Size selection	
How to specify	
Sizing guide	
Installation recommendations	14
Energy savings	
Series 5300	
Series 9200 and 9100	
Operation and installation	
Back pressure regulator (BPR)	10
Series 5300	
Series 9100	
Series 9200	
Selection	
Application guide	د
How to select a valve type	
	0

HOW TO SELECT A VALVE TYPE

Please use the following guidelines to determine the ARC pump protection valve model appropriate for your application.

- 1. Determine which valve model is suitable for your application by using the Application Guide on this page.
- 2. Review the corresponding model's features, operation and technical data in the catalog.
- 3. Once you have determined the model and features required for your application, refer to the sizing guide to determine valve size, materials selection and data necessary for sizing.
- 4. If you are not able to determine the valve model required for your application, please consult your local Emerson sales office for Yarway ARC sizing and selection.

APPLICATION GUIDE

Х	
Х	
Х	
	Х
	Х
	Х
Х	
	Х
Х	
	Х
	x x

A wide range of products with same-day shipment capability supporting our service centers, sales offices and channel partners.

Spare parts inventory

• Soft-goods kits

• Hard parts

• Retrofit kits

Brands

- Anderson Greenwood
- Crosby
- Varec
- Yarway ARC
- * Reference PRONTO price guide

Delivery*

- Same day
- Next day
- 3-5 day
- After hours and weekends

SERIES 9200

A self-contained valve that functions as an integral check valve, flow sensing element and bypass control valve.

OVERVIEW

By providing recirculation flow to the suction source of the pump, the 9200 ARC assures a minimum flow for stable pump operation.

Its balanced bypass trim design offers improved efficiency in pressure letdown, improved flow capacity, stability and performance at all service conditions. Externally, a compact and light weight one-piece design is used to ease valve installation, handling, maintenance, pipe support requirements and considerations. Internally, a flow conditioner is used to improve pressure letdown in the bypass further and reduce noise. For special requirements, the 9200 ARC offers a configurable trim design.

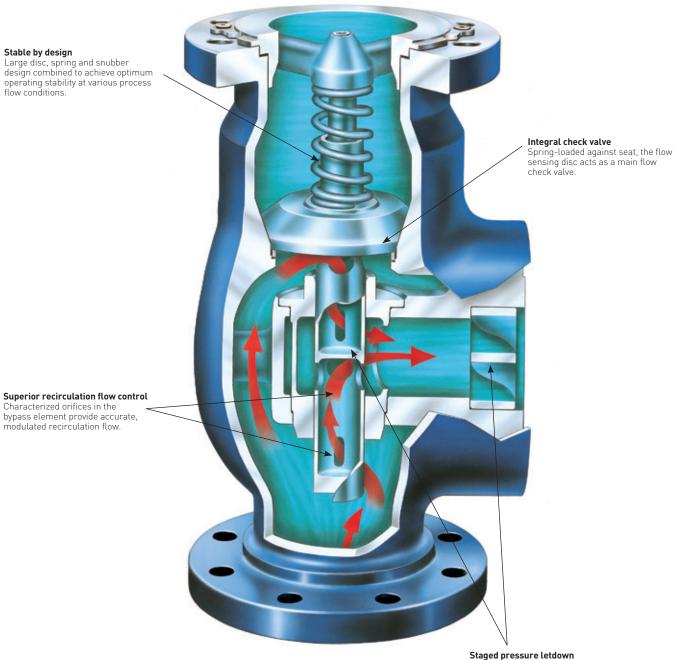
The modulating Series 9200 ARC recirculates only the flow required to assure minimum flow through the pump at all times. Recirculation flow is not required under full process flow but becomes necessary as process flow demand decreases. Unlike continuous recirculation, the ARC responds directly to this need, avoiding the necessity to oversize the pump and prime mover which can add substantially to the capital, energy and operating costs of the system.

The ARC also provides cost savings over an instrumented flow control loop. Instead of a multiple component system, the ARC is self-contained: a flow sensing orifice; a check valve; a recirculation control valve and a pressure letdown device. Moreover, it requires no instrument signal or power source and none of the associated maintenance.

OPTIONS

- NACE conforming to MR0175
- External BPR (back pressure regulator if required
- DIN, BS, JIS, RTJ, FF flanges
- High alloy (6Mo) construction
- Super duplex stainless steel (Zeron 100) construction
- Extreme temperature design (Variseal)

TECHNICAL DATA


	Sizes	2", 3", 4", 6", 8", 10", 12"
ator)	Rating	and 14" ANSI B16.34 Class 150
	5	and 300
	Connections	ASME B16.5 raised face
100)	Temperature range	-100°F to 550°F
		(-73°C to 287°C)
eal)	Materials	Carbon steel SA216 WCB,
		stainless steel SA351
		CF8M, PTFE, EPDM, FKM

FEATURES

- Eliminates high cost of installation and maintenance of complex conventional flow control loops.
- Eliminates multiple component vendors.
- Eliminates cavitation in the valve and piping.
- Only three pipe connections.
- Eliminates any power source or instrument signal.
- One piece bonnetless, packless body design eliminates a potential leak path to atmosphere.
- Intrinsically safe for a broad range of pumping applications in the hydrocarbon industry.
- Totally mechanical bypass activation with no levers, linkage, control signals or pilot valves to fail reduces maintenance and improves reliability.
- Integral vortex-inducing flow conditioner controls the damaging effects of cavitation resulting from fluid pressure reduction.
- Balanced stem designed with characterized orifices provides a two-stage pressure reduction, extending trim life and eliminating potentially destructive cavitation, ensuring stable operation.
- Flow loop testing and performance curve evaluation of each valve order assures reliable performance from every valve.

SERIES 9200

Staged pressure letdown Balanced bypass trim design provides multistage pressure reduction.

5

SERIES 9100

A self-contained system that requires no instrument signal or power source.

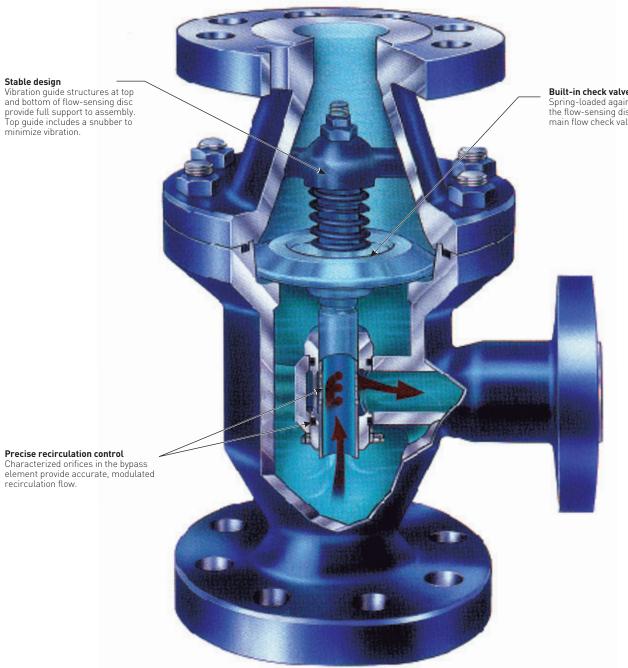
OVERVIEW

By providing recirculation flow to the inlet of the pump, the 9100 ARC helps ensure a minimum flow for stable pump operation.

The modulating 9100 ARC recirculates only the flow required to help ensure a minimum flow through the pump at all times. Recirculation flow is not required under full process main flow demand but becomes necessary as the process main flow demand decreases. Unlike continuous recirculation, the ARC responds directly to this need, eliminating the necessity to oversize the pump and prime mover, minimizing their capital cost as well as the cost of energy needed for their operation.

An ARC valve also saves most of the costs of a conventional multiple component flow control loop because the valve itself is a completely self-contained system: it is a flow sensing orifice; a check valve; a recirculation control valve and a pressure letdown device. As a self-contained system, it requires no instrument signal or power source or any of the associated maintenance.

OPTIONS	TECHNICAL DATA		
NACE conforming to MR0175	Sizes	1", 1½", 2", 3", 4", 6", 8",	
 External BPR (back pressure regulator) if 		10", 12"	
required	Rating	ANSI B16.34 Class 150,	
 DIN, BS, JIS, RTJ, FF flanges 		300 and 600	
 High alloy (6Mo) construction 	Connections	ASME B16.5 raised face	
• Super duplex stainless steel (Zeron 100)	Temperature range	-100°F to 550°F	
construction		(-73°C to 287°C)	
• Extreme temperature design (Variseal)	Materials	Carbon steel SA216 WCB, stainless steel SA351	



FEATURES

CF8M, PTFE, EPDM, FKM

- Eliminates high cost of installation and maintenance of complex conventional flow control loops.
- Eliminates multiple component vendors.
- Eliminates cavitation in the valve and piping.
- Only three pipe connections.
- Eliminates any power source or instrument signal.
- Intrinsically safe design with all static seals, packless design (no stuffing boxes), no leak path to atmosphere and no electrical wiring.
- Ideal for broad pumping applications in the hydrocarbon industry.
- Totally mechanical self-powered design with no linkages, control signals, pilot valves, etc. reduces maintenance costs dramatically.
- Certified test curve supplied with each valve lot.

SERIES 9100

Built-in check valve Spring-loaded against seat, the flow-sensing disc acts as a main flow check valve.

Precise recirculation control Characterized orifices in the bypass element provide accurate, modulated

recirculation flow.

SERIES 5300

A self-contained system that includes pressure reducing trim.

OVERVIEW

OPTIONS

Centrifugal feed pumps need a reliable recirculation system to prevent pump instability and overheating during critical low load periods. Because many such systems are constructed from a number of components, they can become both complex and costly, requiring substantial outlays for design, installation and maintenance.

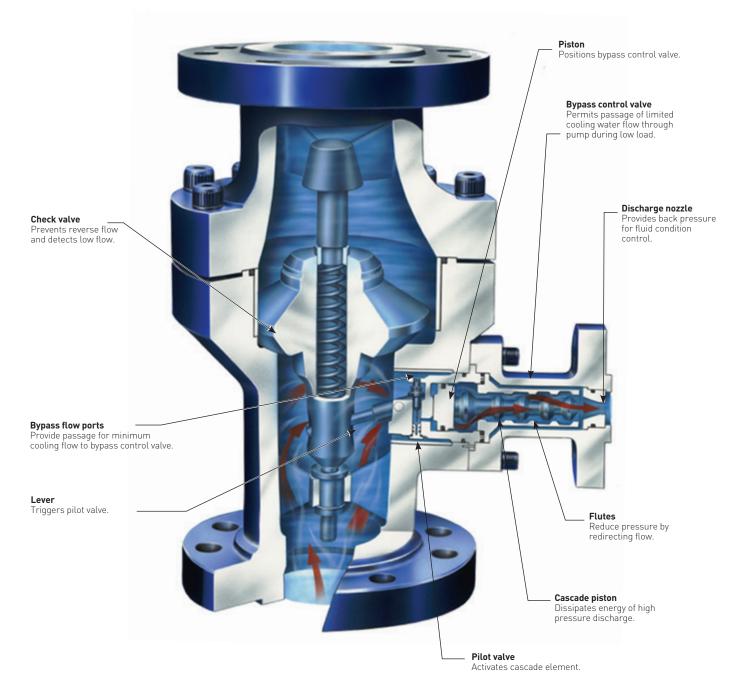
The 5300 ARC valve is a complete system which performs four separate functions within the pumping circuit - all within one compact body. Essentially, the 5300 ARC valve is a check valve installed in the main line but also acts as the sensing and powering element which pilots the operation of a recirculation control valve. The sensing system responds to changes in flow rather than pressure.

The control valve incorporates a pressure reducing device that divides recirculation flow and guides the resulting streams through successive 90° turns to dissipate the destructive energies of high pressure while controlling fluid velocity.

As the 5300 ARC valve recirculates only that flow needed to cool a feed pump at critical times of low load rather than permitting a continuous recirculation flow, it saves the electrical power that continuous recirculation would consume, which can cost several thousand dollars per year.

• NACE conforming to MR0175	Sizes	3", 4", 6", 8", 10", 12", 14"
• DIN, BS, JIS, RTJ, FF, BWE flanges	Rating	ANSI B16.34 Class 900,
		1500, 2500
	Connections	ASME B16.5 raised face
	Temperature range	-50°F to 500°F
		(-46°C to 260°C)
	Materials	Carbon steel SA216 WCB,
		stainless steel SA351
		CF8M, PTFE, EPDM, FKM,
		Kalrez

TECHNICAL DATA



FEATURES

- Saves power costs by eliminating the need for continuous recirculation to cool the pump.
- Saves system engineering time through the inclusion of reverse flow prevention, low flow detection, recirculation flow control and recirculation flow pressure reduction.
- Eliminates multiple vendor complexities associated with systems combining various pneumatic, thermal and mechanical components.
- Saves installation and maintenance costs

 Needs no electrical wiring, plant or
 instrument air.
 - Eliminates other components of a conventional system.
 - Eliminates multiple pressure reducing orifices and capillary tubes.
 - Eliminates duplication created by two control valves in a series - one for pressure reduction and one for tight shut-off.
- Reduces downtime by minimizing the problems of high velocity wire-drawing and cavitation erosion common to high pressure drop service.

SERIES 5300

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) BACK PRESSURE REGULATOR (BPR)

OVERVIEW

In high pressure pumping applications the system often does not provide adequate pressure in the bypass line to prevent cavitation or flashing. Either of these conditions can cause damage to both valves and the pipe system or cause a reduction in flow beyond the minimum desired, jeopardizing the pump protection system.

The requirement of back pressure is generic to all pressure reducing applications. Pressure reduction, even by multiple stage cascading such as in the Series 5300 ARC, can minimize the requirement. However, no valve design will redefine a fluid's physical properties.

This becomes especially important in modulating systems. A fixed orifice will not provide the proper back pressure at all flow levels. As the flow in the bypass line is reduced, the orifice becomes less effective. Proper system design should be used to optimize valve pressure reduction and consider all fluid dynamic effects downstream of any pressure reducing device.

When adequate back pressure is not available downstream of a pressure reducing valve, vapor bubbles will form in the zone just downstream of the valve last stage control surface. This zone is defined as the 'vena contracta' and represents the point of highest fluid velocity and lowest pressure. The potential for damage to downstream piping components and flow reduction exists from this point.

When line pressure remains below the fluid vapor pressure, any existing bubbles will remain and expand as piping friction reduces line pressure further. This can be defined as a 'flashing condition' and is characterized by a polished appearance on affected surfaces. When the line pressure drops below the fluid vapor pressure and then recovers, any entrapped vapor bubbles will collapse (implode). This is defined as a 'cavitating condition' and is characterized by a cinderlike appearance on affected surfaces. The resolution of either condition is best addressed by eliminating vapor formation which can be ensured by the provision of adequate back pressure. The 'back pressure factor' is key to reliable system operation and must not be ignored in piping design considerations.

It is the obligation of a responsible automatic recirculation control valve manufacturer to analyze the system needs and supply a back pressure regulator (BPR) when it is warranted by the laws of fluid dynamics. For on/off systems this could be a simple orifice but for modulating conditions it must be a dedicated BPR device.

OPTIONS	TECHNICAL DATA			
 NACE conforming to MR0175 High alloy (6Mo) construction Super duplex stainless steel (Zeron 100) 	Sizes	1½", 2", 3", 4", 6" (flanged) ¾", 1½", 2", 3", 4", 6" (wafer)		
construction • RTJ flanges	Rating	ANSI B16.34 Class 150, 300, 600, 900, 1500		
-	Connections	ASME B16.5 raised face		
	Temperature range	-50°F to 500°F (-46°C to 260°C)		
	Materials	Carbon steel A105 WCB, stainless steel SA479 316, PTFE, EPDM, FKM		

SERIES 9200 AND 9100

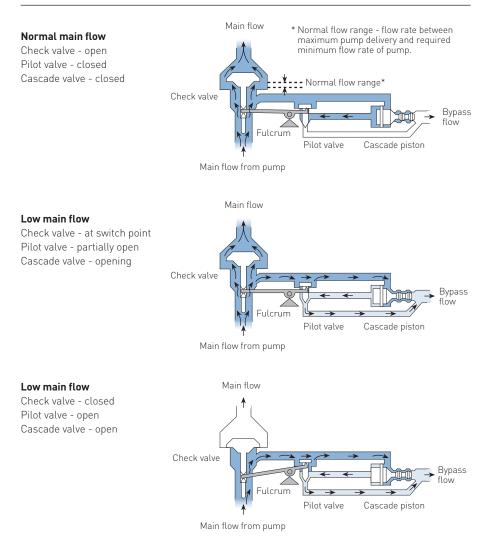
The heart of the recirculation valve is a main flow sensing check valve disc which is flow, not pressure, sensitive. The disc modulates to the demand for process flow at the same time assuring a minimum flow through the pump, resulting in a consistent, stable and repeatable performance over the full pressure range.

(Figure 1) shows the disc in the closed position where there is no process flow and the bypass is fully open. This protects the pump against planned or accidental 'dead heading' which can result from a closed downstream pump isolation valve or process control valve. As the disc lifts (Figure 2) in response to an increase in flow to the process, the bypass element, which is integral to the disc, closes the bypass flow orifices reducing recirculation flow, which is controlled with disc position. This modulation feature assures that the total of process flow and recirculation flow exceed the minimum flow through the pump as specified by the pump manufacturer.

When the disc is set at full lift position (Figure 3), the bypass is closed. As process flow decreases, the reverse action occurs and the recirculation flow increases again. Flow enters the bypass element at the bottom of the disc assembly and is controlled by characterized orifices inside the disc stem. Flow continues through an annulus in the bypass bushing and is directed to the outlet of the valve.

	Figure 1 No process flow Full recirculation	Figure 2 Changing process flow Controlled recirculation	Figure 3 Increased process flow No recirculation
SERIES 9100			
SERIES 9200			
PUMP OPERATION	Pead 	ui M	Pro H

SERIES 5300

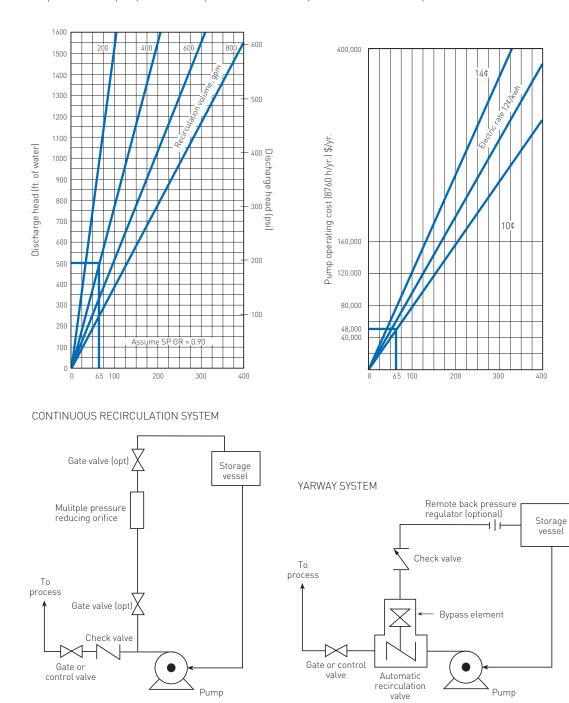

The ARC valve is installed in the pump discharge line in the position of the main check valve it replaces. It is adaptable to horizontal or vertical piping and to either horizontal or vertical upward flow. Flanged or welded ends are optional to suit specifications.

Decreasing flow through the valve causes the spring loaded disc to move toward its seat. At a flow rate determined by the minimum flow requirement through the pump, the disc triggers the pilot valve through the lever. This vents the pressure on the head of the piston. Pressure acting on the opposite side of the piston opens the bypass valve, permitting flow through the multi-stage cascade element. The flow rate through the bypass valve is equal to the minimum flow requirement of the pump.

The directional changes of the successive helical flutes, as well as the multiple orifices, provide for the absorption of pressure energy.

The bypass valve will remain in an open position as long as the pilot valve is open. This corresponds with the position the disc assumes at flow rates between an established low flow and no flow through the main check valve. As the flow rate exceeds the minimum flow rate, the rising disc allows the pilot valve to close; pressure entering the chamber over the piston through the annular clearance around the pilot.

MAIN FLOW



ARC PUMP PROTECTION VS. CONTINUOUS RECIRCULATION

The cost of the electricity consumed in continuous recirculation cooling is significantly higher than usually realized. For example, the manufacturer of a 1200 gpm pump with a discharge head of 500 feet, may require 400 gpm recirculated flow to keep it cool (Figure 1). Continuously pumping 400 gpm against a 500-foot head requires 65 horsepower. In a 10¢/kwh power cost area, total annual cost savings using an ARC valve would be approximately \$48,000 (Figure 2).

FIGURE 2 Power required for recirculation (hp)

VALVE INSTALLATION

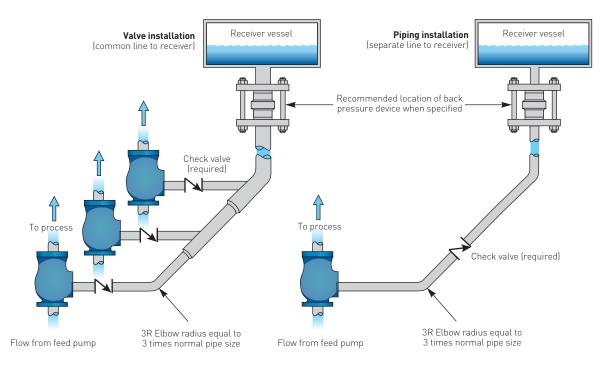
Two common installation approaches are illustrated below. In the first, a common recirculation line is used to return bypass flow to the receiver vessel where multiple pumps are used to produce process flow. In these installations, each pump must be protected with a dedicated pump protection valve. The second diagram shows the more common one pump, one bypass system approach.

In each of these cases, treatment of the bypass line is very similar once flow requirements have been determined. Commonly, a back pressure device with fixed or variable orifice is mounted close to the receiver vessel where flashing liquid is discharged safely. Check valves are installed in the bypass line to prevent bypass back flow and block valves are installed with a lock open option to allow closure by authorized personnel only.

The ARC can be installed in a vertical flow up or horizontal position. Other piping practices regarding velocity, geometry and location of valve and pipe members should be consistent with good industry practices and standards.

BACK PRESSURE REGULATOR

In high pressure pumping applications the system often does not provide adequate pressure in the bypass line to prevent cavitation or flashing. Either of these conditions is undesirable in that it can cause damage both to valves and the pipe system or cause a reduction in flow below the minimum desired, jeopardizing the pump protection system.


The requirement of back pressure is generic to all pressure reducing applications. Pressure reduction even by multiple stage cascading can minimize the requirement, however no valve design will redefine a fluid's physical properties.

This becomes especially important in modulating systems. A fixed orifice will not provide the proper back pressure at all flow levels. As the flow in the bypass line is reduced, the orifice becomes less effective.

Proper system design should be used to optimize valve pressure reduction and consider all fluid dynamic effects downstream or any pressure reducing device.

MULTIPLE PUMP INSTALLATION

SINGLE PUMP INSTALLATION

HOW TO SPECIFY

Centrifugal pump minimum flow protection shall be provided by a self-contained multi-function valve requiring no external power source or actuation device.

The valve shall provide the functions of:

- 1. Spring loaded check valve, to prevent pump damage from reverse flow.
- 2. Flow sensor, which will activate a recirculating device at the specified minimum pump flow rate.
- 3. Pressure reducing device, to reduce high pump discharge pressures effectively to low receiver tank/sump pressures.

Additional considerations:

- 1. Pump protection valve shall be sized to provide the required minimum pump flow rate.
- 2. Bypass actuation shall be by direct contact of the switching mechanism to the flow sensing check valve disc.
- 3. Bypass trim shall have a 1:1 ratio with the flow sensing check valve disc travel providing optimum modulated control (applies to 9200 and 9100 models only).
- 4. Bypass trim shall have the capability of providing extended bypass control service. External manual bypass piping shall not be acceptable.
- 5. Pump protection valve shall be designed and constructed in accordance with ANSI B16.34 and PED.
- 6. Pressure reduction in the bypass shall be the vendor's responsibility to control flashing, cavitation and choked flow conditions within the valve's trim and at the valve's discharge.
- 7. Sealing surfaces in the valve trim shall be located in an area to minimize erosion and cavitation damage.
- 8. The sum of the process and bypass flow rates shall always exceed the specified minimum pump protection flow rate.
- 9. The bypass shall be shut off when the process flow rate is greater than the minimum pump protection flow rate.
- 10. Valve manufacturer shall provide a sizing, configuration report and flow graph.
- 11. Valves shall be designed to be repairable.
- 12. Valves shall include a snubber device on the check valve disc to provide pulsation damping due to pressure transients.
- 13. Valves shall be flow tested by the manufacturer and certified performance reports shall be provided.

MAXIMUM MAIN FLOW (gpm (m³/hr) at specific gravity = 1)

	Inch (DN)										
Series	1 (25)	1½ (40)	2 (50)	3 (80)	4 (100)	6 (150)	8 (200)	10 (250)	12 (305)	14 (350)	16 (400)
9200	-	-	190 (43)	430 (98)	765 (174)	1600 (364)	2800 (636)	4500 (1023)	6500 (1477)	8500 (1932)	-
9100	47 (10.7)	110 (25)	190 (43)	400 (91)	700 (133)	1600 (364)	2800 (636)	4500 (1023)	6500 (1477)	-	-
5300	-	-	-	392 (89)	735 (167)	1567 (356)	2743 (623)	4114 (934)	5388 (1224)	6466 (1469)	8621 (1958)

MATERIAL SELECTION

Body material	ANSI Class - CWP					
Model number - description	150	300	600	900	1500	2500
0 - WCB	285	740	1480	2220	3705	6170
1 - CF8M	275	720	1440	2160	3600	6000
5 - Super Duplex	290	750	1500	2250	3750	6250
6 - 6Mo	290	750	1500	2250	3750	6250

Soft goods	Tempe	erature
Model number - description	Max.	Min.
P - TFE Propylene	400	-20
V - Fluorocarbon Rubber (FKM)	400	-20
E - Ethylene Propylene Rubber (EPDM)	300	-65
K - Kalrez	600	20
G - Graphite/Turcon	500	-328
P - LT - Low Temp Turcon	500	-328
T - LT - Low Temp TFE	400	-423

SIZING PROGRAM - PRV²SIZE

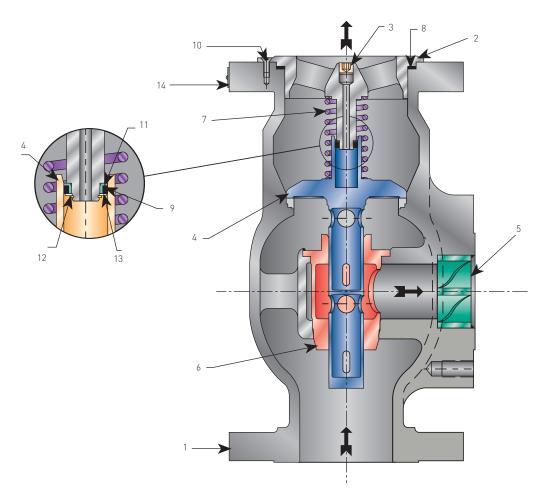
Emerson's PRV²SIZE software incorporates over 135 years of experience and engineering expertise with an extensive array of Anderson Greenwood, Crosby and Varec pressure relief and tank protection devices as well as Yarway pump protection products.

 ${\sf Emerson's}\ {\sf PRV^2SIZE}$ software is a single program providing industry standard product sizing and selection for customers and engineers.

Features include:

- Easy to use and intuitive interface
- Fully configured product selection
- Catalog integration
- Detailed product specifications including cross sectional drawings, dimensions and weights in U.S. Customary Units or Metric
- Flow curves for pump protection products

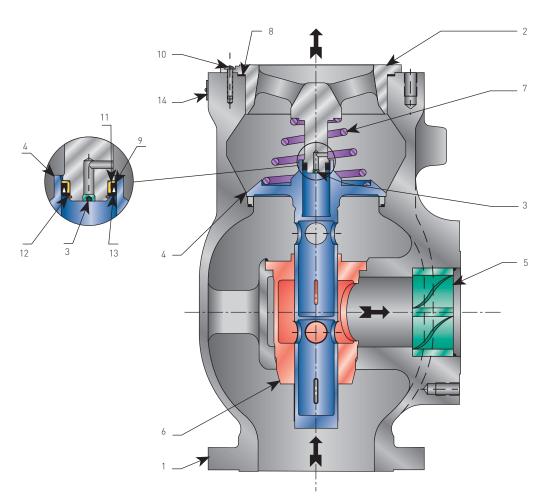
Emerson PRV²SIZE software website: valvesizing.emerson.com



YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) PARTS AND MATERIALS - SERIES 9200

SERIES 9200 - SIZES 2", 3" AND 4"

PARTS AND MATERIALS						
Item	Part	Material				
1	Body	ASTM A-216 Grade WCB with ASTM A747				
		Grade CB7Cu-1 (17-4 PH Cast)				
		Condition H900 (J92180) seat ring				
2	Upper stop	ASTM A216 WCB				
3	Orifice	18-8				
4[2]	Disc assembly	ASTM A351 type CF8M				
5	Flow conditioner	ASTM A351 type CF8M				
6	Bypass bushing	ASTM A747 Grade CB7Cu-1 (17-4 PH Cast)				
		Condition H900 (J92180)				
7[2]	Spring	AISI 316 stainless steel				
8[1][2]	Gasket	Sigraflex BP (Graphite)				
9[1][2]	Snubber seal	Variseal - Carbon filled TFE				
10	Screw	AISI 316 stainless steel				
11 ^{[1][2]}	Snubber ring	ASTM A276-S21800A (Nitronic 60 bar)				
12[1][2]	Spiral ring	PH15-7M0				
13[1][2]	Snubber washer	AISI 316 stainless steel				
14	Nameplate	AISI 300 series stainless steel				


NOTES

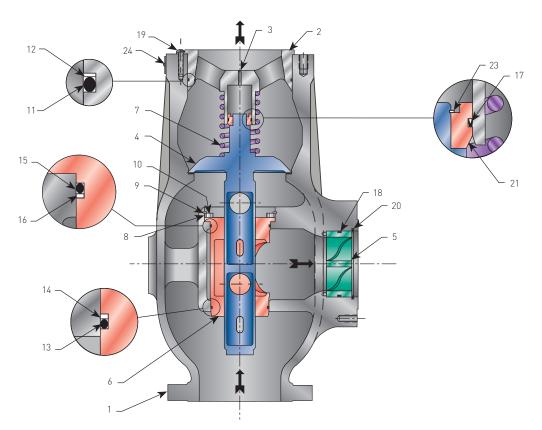
1. Recommended spare parts for service inspection

2. Recommended spare parts for service overhaul

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) PARTS AND MATERIALS - SERIES 9200

SERIES 9200 - SIZES 6" AND 8"

PARTS AND MATERIALS


Item	Part	Material
1	Body	ASTM A-216 Grade WCB with ASTM A747
		Grade CB7Cu-1 (17-4 PH Cast)
		Condition H900 (J92180) seat ring
2	Upper stop	ASTM A216 WCB
3	Orifice	18-8
4[2]	Disc assembly	ASTM A351 type CF8M
5	Flow conditioner	ASTM A351 type CF8M
6	Bypass bushing	ASTM A747 Grade CB7Cu-1 (17-4 PH Cast)
		Condition H900 (J92180)
7[2]	Spring	SST 17-7 PH H900
8[1][2]	Gasket	Sigraflex BP (Graphite)
9[1][2]	Snubber seal	Variseal - Carbon filled TFE
10	Screw	AISI 316 stainless steel
11 ^{[1][2]}	Snubber ring	ASTM A276-S21800A (Nitronic 60 bar)
12[1][2]	Spiral ring	PH15-7M0
13[1][2]	Snubber washer	AISI 316 stainless steel
14	Nameplate	AISI 300 series stainless steel

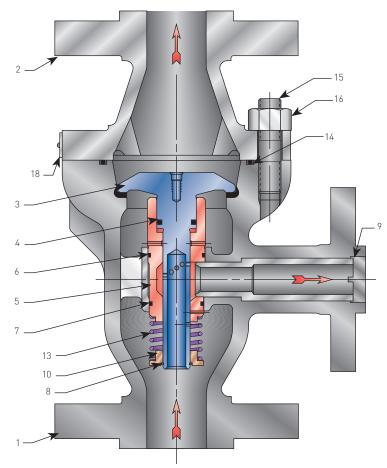
NOTES

1. Recommended spare parts for service inspection

2. Recommended spare parts for service overhaul

SERIES 9200 - SIZES 10", 12" AND 14"

PARTS AND MATERIALS

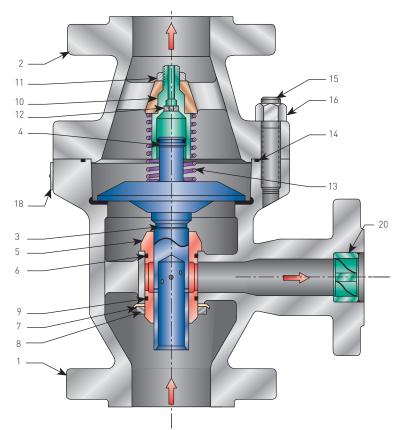

Item	Part	Material
1	Body	ASTM A-216 Grade WCB
2	Upper stop	ASTM A-216 Grade WCB
3	Orifice	Stainless steel 18-8
4[2]	Disc assembly	ASTM A351 type CF8M disc with ASTM A479 Type A21800A stem
5	Flow conditioner	ASTM A351 type CF8M
6[2]	Bypass bushing	ASTM A747 Grade CB7Cu-1 (17-4 PH Cast) Condition H900 (J92180)
7[2]	Spring	17-7 PH Condition CH-900
8	Bushing retainer	ASTM A479 type 410
9[1][2]	Spiral ring	ASTM A564 type 631 (17-7 PH)
10	Set screw	ASTM A286 UNS S66286
11[1][2]	O-ring	EPDM
12[1][2]	Backup ring	Carbon/Graphite reinforced PTFE (Turcite 51)
13[1][2]	O-ring	EPDM
14[1][2]	Backup ring	Carbon/Graphite reinforced PTFE (Turcite 51)
15[1][2]	O-ring	EPDM
16[1][2]	Backup ring	Carbon/Graphite reinforced PTFE (Turcite 51)
17[1][2]	Snubber seal	Variseal Turcon 10
18[1][2]	O-ring	EPDM
19	Screw	Stainless steel 316
20	Spiral ring	ASTM A564 type 631 (17-7 PH)
21[2]	Snubber ring	ASTM A479 type S21800A (Nitronic 60 bar)
23[1][2]	Spiral ring	ASTM A564 type 631 (17-7 PH)
24	Nameplate	300 series stainless steel

NOTES

1. Recommended spare parts for service inspection.

2. Recommended spare parts for service overhaul.

SERIES 9100 - SIZES 1" AND 11/2"


PARTS AND MATERIALS

Item	Part	Material
1	Body	ASTM A351 type CF8M (J92900)
2	Bonnet	ASTM A351 type CF8M (J92900)
3[2]	Disc	ASTM A479 type S21800A
		(Nitronic 60 bar)
4[1][2]	Snubber-seal assembly	Turcite 51 (Glyd ring) and
		TFE/Propylene (O-ring)
5[2]	Bypass bushing	ASME SA564 Grade 630
		(17-4 PH Bar) Condition SA (S17400)
6[1][2]	0-ring	TFE/Propylene
7[1][2]	O-ring	TFE/Propylene
8[1][2]	Spiral ring	Inconel X-750
9[1][2]	Bypass tube	ASTM A312 type 304
10	Spring retainer	ASME SA479 type 316
13[2]	Spring	17-7 PH Condition CH-900
14 ^{[1][2]}	O-ring	TFE/Propylene
15	Stud	ASTM A193 Grade B7 (G41400)
16	Nut	ASTM A194 Grade 2H (K04002)
18	Nameplate	300 series stainless steel

NOTES

- 1. Recommended spare parts for service inspection.
- 2. Recommended spare parts for service overhaul.

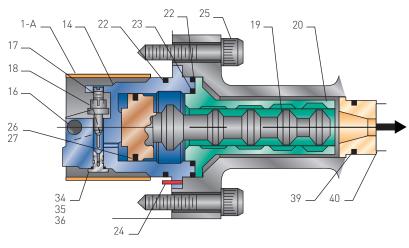
SERIES 9100 - SIZES 2" TO 12"

PARTS AND MATERIALS

Item	Part	Material
1	Body	ASTM A-216 Grade WCB
2	Bonnet	ASTM A-216 Grade WCB
3[2]	Disc assembly	2" to 6": ASTM A351 type CF10SMnN (Nitronic 60 Cast)
	(bypass element)	8" to 12": ASTM A351 type CF8M disc with
		ASTM A479 type A21800A stem
4[1][2]	Snubber-seal assembly	Turcite 51 (Glyd ring) and
		TFE/Propylene (O-ring)
5[2]	Bypass bushing	ASTM A747 Grade CB7Cu-1
		(17-4PH Cast) Condition H900 (J92180)
6[1][2]	O-ring	TFE/Propylene
7[1][2]	O-ring	TFE/Propylene
8[2]	Lock washer	ASTM A194 Grade 8 (18-8)
9[2]	Lock nut	Stainless steel 18-8
10[2]	Upper guide bushing	ASTM A747 Grade CB7Cu-1
		(17-4 PH Cast) Condition A
11 ^[2]	Lock nut	300 series stainless steel
12[2]	Snubber orifice	Stainless steel 18-8
13[2]	Spring	17-7 PH Condition CH-900
14[1][2]	O-ring	TFE/Propylene
15	Stud	ASTM A193 Grade B7 (G41400)
16	Nut	ASTM A194 Grade 2H (K04002)
18	Nameplate	300 series stainless steel
20	Flow conditioner	ASTM A351 type CF8M
	(600 class only)	


NOTES

1. Recommended spare parts for service inspection.


2. Recommended spare parts for service overhaul.

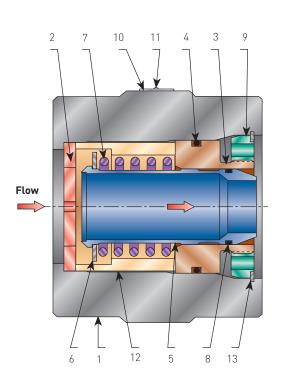
YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) PARTS AND MATERIALS - SERIES 5300

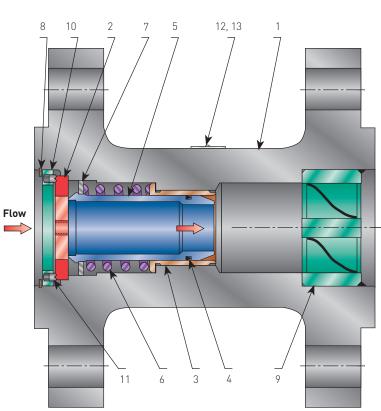
SERIES 5300

SERIES 5300 'E' STAGE CASCADE

PARTS AND MATERIAL

Item	Part	Material
1	Body	ASTM A-216 Grade WCB
1-A	Liner	AISI 302 stainless steel
2[2]	Body bushing	ASTM A276-S21800
		(Nitronic 60 bar)
3[2]	Retaining ring	Steel
4	Liner	AISI 304 stainless steel
5[1][2]	O-ring	TFE/Propylene
6	Bonnet	ASTM A-216 Grade WCB
7[2]	Guide ring	ASTM A276-S21800
		(Nitronic 60 bar)
8	Cap screw	ASTM A193 Grade B7
9	Body bypass	ASTM A-216 Grade WCB
10	Disc	ASTM A351 type CF8M
12[2]	Disc pin x 2	ASME SA564-S63000 COND A
13[2]	Spring	ASTM A313-S30200
14[2]	Control head (I/C)	ASTM A747 Grade CB7Cu-1
		(17-4 PH Cast) Condition H900
		(J92180)
14[2]	Control head (bar stock)	ASME SA564-S63000 COND A
15[2]	Lever	ASTM A582-S41600
16[2]	Pivot pin	ASTM A582-S41600 COND T
17[2]	Pilot valve	ASTM A276-S43100
18[2]	Pilot valve nut	AISI 420F
19[2]	Cascade piston	ASME SA479 S41000
20[2]	Cascade seat bushing	ASTM A747 Grade CB7Cu-1
		(17-4 PH Cast) Condition H900
		(J92180)
21[2]	Piston guide pin (bar stock head)	ASME SA564-S63000 COND A
22[1][2]	O-ring	TFE/Propylene
23[1][2]	O-ring	TFE/Propylene
24[2]	Guide pin	Stainless steel 18-8
25	Cap screw	ASTM A193 Grade B7
26[1][2]	Seal ring	Turcon T11 (Glyd ring)
27[1][2]	0-ring	TFE/Propylene
34[2]	Pilot valve seat	ASTM A276-S43100
35[1][2]	0-ring	TFE/Propylene
00	5	
36[1][2]	0-ring	TFE/Propylene
	O-ring O-ring	TFE/Propylene TFE/Propylene


NOTES


1. Recommended spare parts for service inspection

2. Recommended spare parts for service overhaul

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) PARTS AND MATERIALS - BACK PRESSURE REGULATOR (BPR)

WAFER BPR - 3/4" TO 6"

PARTS	ARTS AND MATERIALS					
Item	Part	Material				
1	Body	ASME SA105				
2[1]	Seat	ASTM A747-CB7Cu-1 with heat treatment				
3[1]	Plunger guide	ASTM A276-S21800 (Nitronic 60 bar)				
4[1]	0-ring	TFE/P (Fluoraz 799)				
5[1]	Plunger	AISI 431 stainless steel with heat treatment				
6[1]	Spring retainer	AISI 304 stainless steel				
7[1]	Spring	ASTM A564 type 631 (17-7 PH) H-900 heat treatment				
8[1]	Energized 'U' cup	Filled TFE				
	seal					
9[1]	Retaining ring	AISI 304 stainless steel				

Stainless steel A269-304

Inconel X-750

AISI 300 series stainless steel

PARTS	MATE	RIAI	S

PARIS	AND MATERIALS	
Item	Part	Material
1	Body	ASME SA105
2[1]	Seat	ASTM A747-CB7Cu-1 with heat treatment
3[1]	Plunger guide	ASME SA564 type 630 (17-4 PH) H-900 heat treatment
4[1]	Energized 'U'	Filled TFE
	cup seal	
5[1]	Plunger	ASTM A479-431 stainless steel with heat treatment
6[1]	Spring	ASTM A564 type 631 (17-7 PH) H-900 heat treatment
7[1]	Spring retainer	AISI 304 stainless steel
8[1]	Spiral ring	AISI 302
9[1]	Flow conditioner	ASME SA747-CB7Cu-1
10[1]	Retaining ring	AISI 316 stainless steel
11[1]	Set screw	ASTM A194 Grade 8 (18-8)
12	Nameplate	AISI 300 series stainless steel
13	Drive screw	Stainless steel

NOTE

10

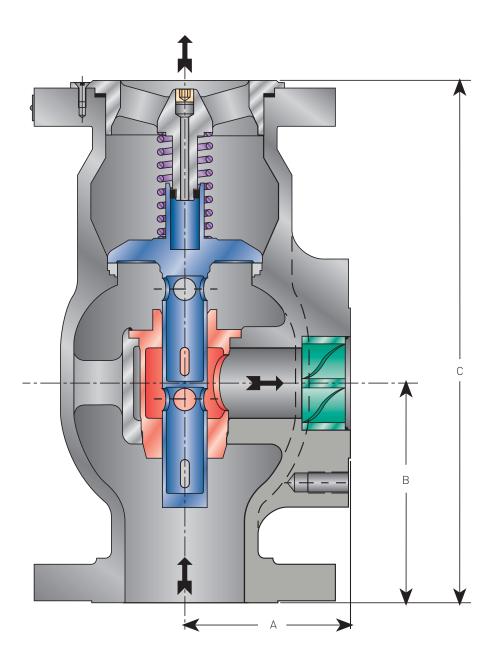
11

12[1]

13[1]

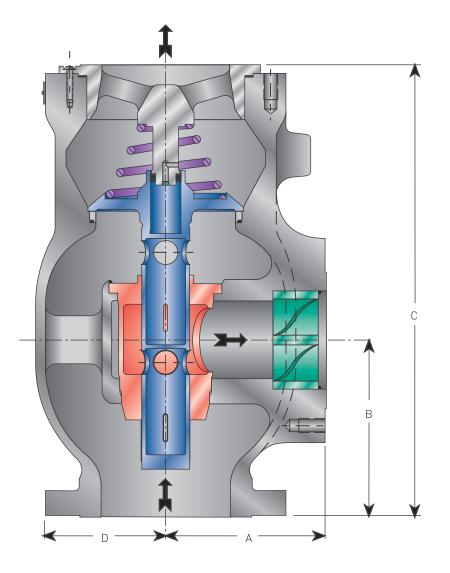
Nameplate

Drive screw

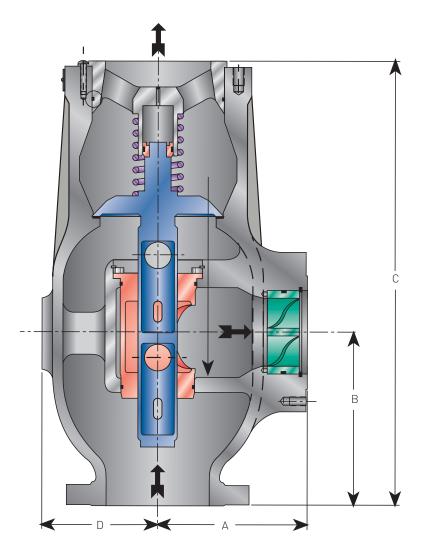

Spacer

Spiral ring

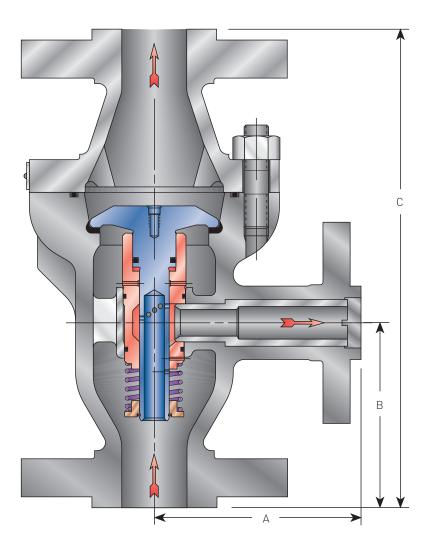
1. Spare parts are serviced by a complete capsule assembly


REMOTE MOUNTED FLANGE BPR - 11/2" TO 6"

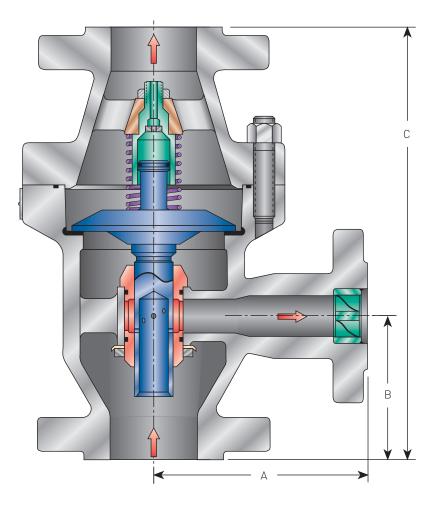
YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - SERIES 9200 (SIZES 2", 3" AND 4")


		Dimensions, in. (mm)				
Valve size in. (DN)	Class ANSI	Α	В	С	Bypass flange size in. (DN)	Weight lb. (kg)
2 (50)	150	41⁄4 (108.4)	4¾ (120.7)	11 (279.4)	11⁄2 (40)	42 (19.0)
	300					46 (20.9)
3 (80)	150	4¾ (120.7)	5¾ (146.1)	13¾ (349.3)	2 (50)	73 (33.1)
	300					81 (36.7)
4 (100)	150	51⁄2 (139.7)	7¾ (196.9)	17¾ (450.9)	3 (80)	126 (57.2)
	300					147 (66.7)

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - SERIES 9200 (SIZES 6" AND 8")


		Dimensions, in. (mm)					
Valve size in. (DN)	Class ANSI	Α	В	С	D	Bypass flange size in. (DN)	Weight lb. (kg)
6 (150)	150	71/2 (190)	81⁄2 (216)	211⁄2 (546)	-	4 (100)	296 (135)
	300						344 (156)
8 (200)	150	10 (254)	11 (279.5)	28 (711)	8¾ (222)	6 (150)	559 (254)
	300						613 (278)

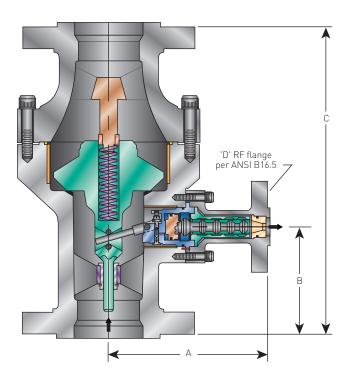
YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - SERIES 9200 (SIZES 10", 12" AND 14")



			Dimensio	ns, in. (mm)			
Valve size in. (DN)	Class ANSI	Α	В	С	D	Bypass flange size in. (DN)	Weight lb. (kg)
10 (250)	150 300	13 (330)	16 (406)	41½ (1054)	10¾ (273)	8 (200)	1600 (726)
12 (300)	150 300	15 (381)	19 (483)	50 (1270)	12¾ (324)	10 (250)	2650 (1200)
14 (350)	150 300	161⁄2 (419)	21 (533)	57½ (1461)	14¾ (375)	10 (250)	3350 (1520)

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - SERIES 9100 (SIZES 1" AND 11/2")

		Dimensions, in. (mm)				
		Α	В	С		
Valve size in. (DN)	Class ANSI	± 1/16 (1.6)	± 1/16 (1.6)	± 1/16 (1.6)	Bypass flange size in. (DN)	Weight lb. (kg)
1 (25)	150	41/2 (115)	4 (102)	101/2 (267)	3⁄4 (20)	27 [12.2]
	300	41/2 (115)	4 (102)	101/2 (267)		32 (14.5)
	600	4¾ (120)	41⁄4 (108)	11 (280)		34 (15.4)
11/2 (40)	150	41/2 (115)	4 (102)	101/2 (267)	3⁄4 (20)	30 (13.6)
	300	41/2 (115)	4 (102)	101/2 (267)		39 (17.7)
	600	43/4 (120)	41⁄4 (108)	11 (280)		40 (18.1)


DIMENSIONS AND WEIGHTS

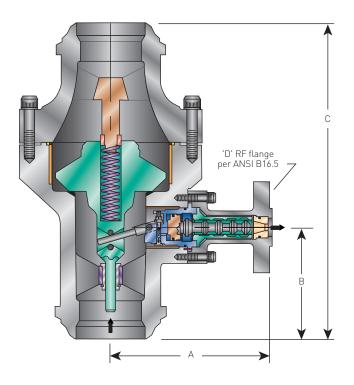
		Dimensions, in. (mm)				
		Α	В	С		
Valve ^[1] size in. (DN)	Class ANSI	± 1/16 (1.6)	± 1/16 (1.6)	± 1/16 (1.6)	Bypass flange size in. (DN)	Weight lb. (kg)
2 (50)	150	515/16 (151)	4 (102)	111/2 (292)	11⁄2 (40)	45 (20)
	300	63/16 (157)	41/4 (108)	12 (305)		53 (24)
	600	61/2 (165)	45/8 (117)	12¾ (324)		55 (25)
3 (80)	150	71/8 (181)	5 (127)	15¼ (387)	2 (50)	97 (44)
	300	7¾ (187)	5¾ (137)	16 (406)		107 (49)
	600	7¾ (197)	5¾ (146)	16¾ (425)		110 (50)
4 (100)	150	9 (229)	515/16 (150)	181/8 (479)	3 (80)	205 (93)
	300	9¾ (238)	61⁄4 (159)	191⁄2 (495)		230 (104)
	600	9¾ (248)	63/4 (171)	201⁄2 (521)		250 (113)
6 (150)	150	1111/16 (297)	61/8 (175)	21¾ (552)	4 (100)	310 (141)
	300	12 (305)	75/16 (186)	22% (575)		340 (154)
	600	121/2 (318)	8 (203)	24 (610)		450 (204)
8 (200)	150	1711/16 (449)	111/2 (292)	341/2 (786)	6 (150)	580 (263)
	300	185/16 (465)	12 (305)	351/2 (902)		660 (299)
	600	1813/16 (478)	1213/16 (325)	371/8 (943)		770 (349)

NOTE

1. 10" and 12" sizes available, contact your sales representative for more information.

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - SERIES 5300 (FLANGE ENDS)

DIMENSIONS AND WEIGHTS


			Dimensions, in. (mr	n)		
Valve ^[1] size in. (DN)	Class ANSI	Α	В	С	(D) Bypass flange size in. (DN)	Weight lb. (kg)
3 (80)	600	101/2 (266.7)	6 (152.4)	171/16 (433.4)	1 (25)	170 (77)
3 (80)	900	101/2 (266.7)	6 (152.4)	171/16 (433.4)	1 (25)	200 (91)
3 (80)	1500	101/2 (266.7)	6 ¹³ /16(173.0)	191/8 (504.8)	1 (25)	*
3 (80)	2500	13 (330.2)	7%/16 (192.1)	21% (555.6)	1 (25)	*
4 (100)	600	151⁄2 (393.7)	6¾ (171.5)	195/16 (490.5)	11⁄2 (40)	300 (136)
4 (100)	900	151⁄2 (393.7)	6¾ (171.5)	19%/16 (496.9)	11⁄2 (40)	340 (154)
4 (100)	1500	151⁄2 (393.7)	83/16 (208.0)	245/16 (617.5)	11⁄2 (40)	525 (238)
4 (100)	2500	18¼ (463.6)	91/16 (230.2)	261/8 (663.6)	11⁄2 (40)	560 (254)
6 (150)	600	175/8 (447.7)	91⁄4 (235.0)	2513/16 (655.6)	2 (50)	680 (308)
6 (150)	900	171/8 (447.7)	9%/16 (242.9)	261/8 (663.6)	2 (50)	740 (336)
6 (150)	1500	175/8 (447.7)	11 (279.4)	3015/16 (785.8)	2 (50)	1400 (635)
6 (150)	2500	221/2 (571.5)	12 (304.8)	3215/16 (836.6)	2 (50)	1480 (671)
8 (200)	600	21 (533.4)	117/8 (301.6)	3313/16 (858.8)	21/2 (65)	1180 (535)
8 (200)	900	21 (533.4)	117/8 (301.6)	3313/16 (858.8)	21/2 (65)	1330 (603)
8 (200)	1500	21 (533.4)	111/8 (301.6)	3313/16 (858.8)	21/2 (65)	1730 (785)
8 (200)	2500	24¾ (628.7)	14 (355.6)	4111/16 (1058.9)	21/2 (65)	*
10 (250)	600	281/2 (723.9)	137/16 (341.3)	361/2 (927.1)	3 (80)	1900 (862)
10 (250)	900	281/2 (723.9)	137/16 (341.3)	361/2 (927.1)	3 (80)	2000 (907)
10 (250)	1500	281/2 (723.9)	1413/16 (376.2)	413/16 (1046.2)	3 (80)	3020 (1370)
10 (250)	2500	321/2 (825.5)	187/16 (468.3)	521/16 (1322.4)	3 (80)	5000 (2268)
12 (300)	600	321/8 (835.0)	151/2 (393.7)	401/4 (1022.4)	3 (80)	2350 (1066)
12 (300)	900	321/8 (835.0)	151⁄2 (393.7)	401/4 (1022.4)	3 (80)	2600 (1179)
12 (300)	1500	321/8 (835.0)	171/8 (435.0)	48 (1219.2)	3 (80)	*

NOTES

* Contact your local sales representative.

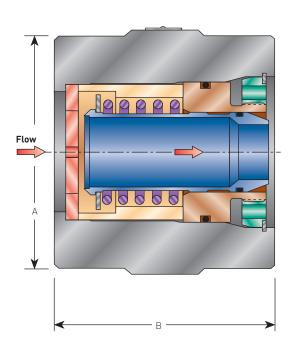
1. 14" and 16" sizes available, contact your sales representative for more information.

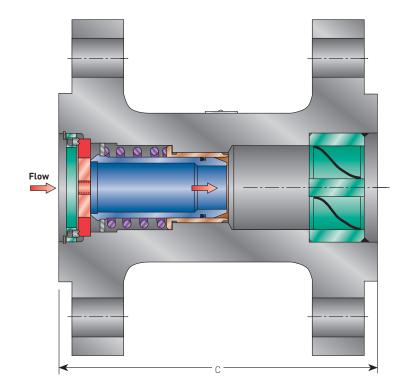
YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - SERIES 5300 (BUTT WELDING ENDS)

DIMENSIONS AND WEIGHTS

			Dimensions, in. (mn	n)		
Valve ^[1] size in. (DN)	Class ANSI	Α	В	С	(D) Bypass flange size in. (DN)	Weight lb. (kg)
3 (80)	900	101/2 (266.7)	6 (152.4)	171/16 (433.4)	1 (25)	136 (62)
3 (80)	1500	101/2 (266.7)	61/8 (155.6)	19 (482.6)	1 (25)	*
3 (80)	2500	13 (330.2)	61/8 (155.6)	19 (482.6)	1 (25)	*
4 (100)	900	151/2 (393.7)	61/2 (165.1)	191/16 (484.2)	11⁄2 (40)	285 (129)
4 (100)	1500	151/2 (393.7)	83/16 (208.0)	237/8 (606.4)	11⁄2 (40)	450 (204)
4 (100)	2500	18¼ (463.6)	83/16 (208.0)	237/8 (606.4)	11⁄2 (40)	470 (213)
6 (150)	900	175/8 (447.7)	93/4 (247.6)	26%/16 (674.7)	2 (50)	640 (290)
6 (150)	1500	175/8 (447.7)	11 (279.4)	3015/16 (785.8)	2 (50)	1125 (510)
6 (150)	2500	221/2 (571.5)	10¾ (273.0)	3011/16 (779.5)	2 (50)	1200 (544)
8 (200)	900	21 (533.4)	121/8 (327.0)	341/8 (885.8)	21/2 (65)	1025 (465)
8 (200)	1500	21 (533.4)	121/8 (327.0)	341/8 (885.8)	21/2 (65)	1290 (585)
8 (200)	2500	24¾ (628.6)	135/16 (338.1)	351/4 (895.3)	21/2 (65)	2400 (1089)
10 (250)	900	281/2 (723.9)	145/16 (363.5)	37% (949.3)	3 (80)	1600 (726)
10 (250)	1500	281/2 (723.9)	1415/16 (363.5)	403/16 (1020.8)	3 (80)	2150 (975)
10 (250)	2500	321/2 (825.5)	15 ³ /16 (385.8)	4013/16 (1036.6)	3 (80)	4150 (1882)
12 (300)	900	327/8 (835.0)	151⁄2 (393.7)	401/4 (1022.4)	3 (80)	1740 (789)
12 (300)	1500	327/8 (835.0)	171/8 (435.0)	48 (1219.2)	3 (80)	*
12 (300)	2500	42 (1066.8)	171⁄4 (438.2)	48 (1219.2)	3 (80)	*

NOTES

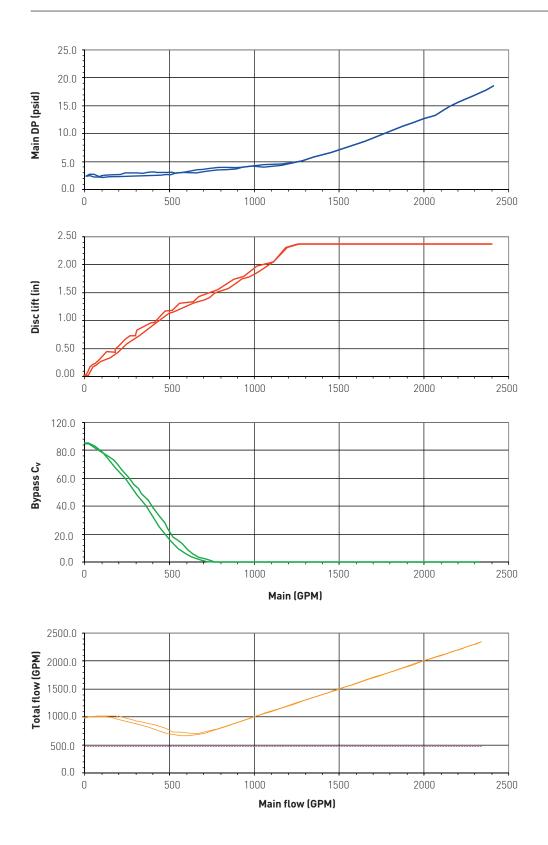

* Contact your local sales representative.


1. 14" and 16" sizes available, contact your sales representative for more information.

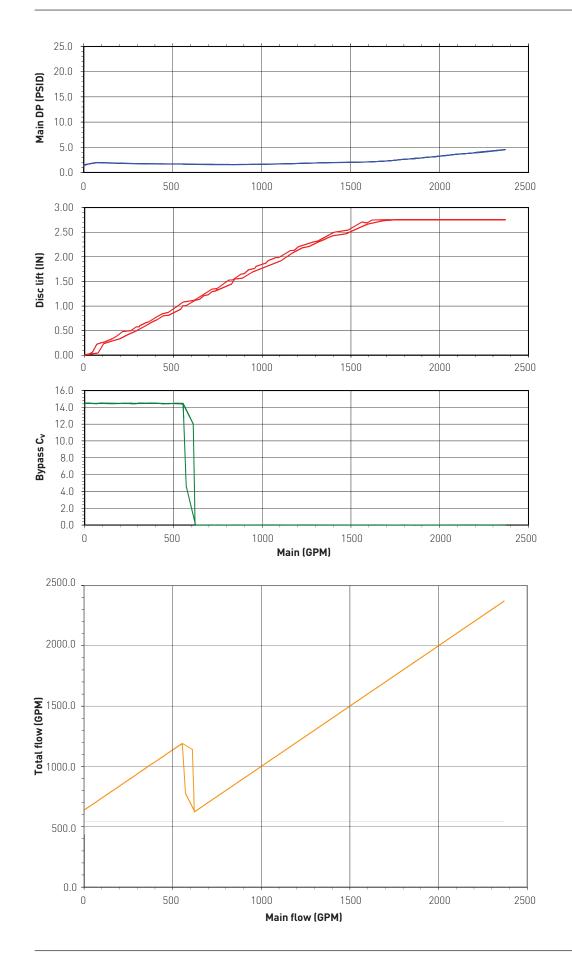
YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) DIMENSIONS AND WEIGHTS - BACK PRESSURE REGULATOR (BPR)

WAFER BPR - 3/4" TO 6"

FLANGED BPR - 11/2" TO 6"


DIMENSIONS AND WEIGHTS

	[Dimensions, in. (mn	ר)	
	Α	В	Flanged C	
BPR size ^[1]	± 1/16" (1.6)	± 1/16" (1.6)	± 1/16" (1.6)	Wafer approx. weight lb. (kg)
3/4"	11/6 (42.9)	4 (101.6)	-	5 (2.3)
11/2"	21/8 (73.0)	21/8 (73.0)	6 (152.4)	5 (2.3)
2″	35/8 (92.1)	3¾ (85.7)	6 (152.4)	8 (3.6)
3″	5 (127.0)	41/8 (117.5)	8 (203.2)	21 (9.5)
4"	63/16 (157.2)	5¾ (146.0)	12 (304.8)	40 (18.1)
6"	81⁄2 (215.9)	71⁄2 (190.5)	17 (431.8)	96 (43.5)


NOTES

1. For flanged 8" and 10", contact your sales representative.

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) FLOW TEST EXAMPLE - SERIES 9200, 9100

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) FLOW TEST EXAMPLE - SERIES 5300

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) MODEL NUMBERING - SERIES 9200, 9100 AND 5300

SELECTION GUIDE 91 -04 XXXX XXXX -L -LT Example: 0 1 Ν -T 2 Series **53** 5300 91 9100 92 9200 Material WCB 5 Super duplex 0 1 CF8M 6 6Mo Pressure class 1 150 4 900 2 300 5 1500 3 600 6 2500 NACE N NACE No NACE -Size **01** 1"^[2] 4" 04 **12** 12" **15** 1.5"^[2] 6" 14" 06 14 **02** 2" 8" 08 **03** 3" 10 10" Soft goods PTFE/Flouraz ۷ FKM Ρ PTFE/Turcon^[3] FKM/Turcon^[3] Е EPDM G Graphite/Turcon^[3] EPDM/Turcon^[3] т Turcite Variseal^[2] κ Kalrez Virgin TFE/Turcon^[3] Main C_v XXXXH^[1] XXXXV^[1] XXXX Bypass C_v XXXX Flange type RJ RTJ RF Raised face BW Butt weld FF Flat face Spring type L Low^[2] High^[2] н -None Option $\textbf{LT} \quad \text{Low temp}^{\scriptscriptstyle [2][3]}$

- None

NOTES

1. 5300 only, main C_v with orientation

2. 9100 only

3. 9200 only

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) MODEL NUMBERING - BACK PRESSURE REGULATOR (BPR)

SELE	ECTION GUIDE								
Exar	nple:			91	60	Ν	-200	-P	-R100
Seri	es								
	9100								
Mate									
60	WCB								
70	CF8M								
NAC									
Ν	NACE								
-	No NACE								
Size									
		300							
150	1.5"	400	4"						
200		600	6"						
	goods								
Р	PTFE/Flouraz (STD)								
۷	FKM								
Е	EPDM								
	ating								
R100									
R200									
R300	0								
R400	ס								
R500	0								

To enable correct valve sizing for your application, please provide the following information:

Customer:	E-Mail:
Company:	Qty Required:
Project:	Delivery Required:
Location:	Additional Info:
Phone:	Tags(s) ID:

PUMP FLOW

Normal - Process - flow:		GPM
Maximum - Process - flow:		GPM
Minimum - Process - flow (if to be considered):	(optional)	GPM
Minimum - Pump protection - (recirculation) flow:		GPM

PUMP DISCHARGE PRESSURE

Pressure at Shut Off (zero) flow:		psig
Pressure at Normal - Process - flow:		psig
Pressure at Minimum - Process - flow:	(optional)	psig
Pressure at Minimum - Pump protection - flow:		psig
Recirculation line (existing) - Back Pressure:		psig

TEMPERATURE

Normal temperature at ARC Valve:		Deg F
Maximum temperature at ARC Valve:		Deg F

FLUID DATA

Media		Orientation of ARC Valve:	
Specific Gravity		Desired Valve Size:	
Vapor Pressure	PSIA	Desired End Connections:	
Critical Pressure	PSIA	Pressure Class:	
Viscosity	сP	Desired Body Material:	
		Desired Seal Material:	

Pump Drive Type:

Comments:

NACE materials required? Flow test with Performance Certificate required? Customer Inspection required prior to shipment? Certificate of Compliance for hydo test required? Magnetic Particle test required? Radiograph Inspection required (specify scope)? Certified Material Test Report (Pressure Containing Components only)?

Flow tests are conducted on all models, one per valve size with additional tests at additional cost. If flange drilling is other than ANSI, please specify in "Comments." Please include Pump Curve if available

YARWAY ARC PUMP PROTECTION VALVES (AUTOMATIC RECIRCULATION) HYDRAULIC PERFORMANCE TEST LAB

In our hydraulic performance test laboratory, state-of-the-art data acquisition and computer graphics techniques are called upon for evaluation of the significant performance characteristics of Yarway recirculation control valves.

The lab's equipment makes it possible to test a valve over its complete flow range for factors including:

- Total flow through the pump
- Disc position
- Pressure drop across the main check
- Bypass C_v
- Bypass dP
- Valve response to sudden changes in flow
- Bypass piston pressure

These detailed analyses are the user's complete assurance that the valve meets performance requirements in all respects and can be supplied with the valve. A certified test curve is shipped with each valve (see pages 33-34 for examples). Insist on it, as you would for your pump!

Emerson delivers factory-trained teams of mobile technicians, 24/7/365. A fleet of fullystocked service vehicles, pickup and delivery services allows us to work anywhere you need us, from the field to our own state-of-the-art production facility with minimal downtime.

Knowledge

Our advanced TecSmart[™] technician training program and eDge[™] asset management software allow us to build on our extensive knowledge and leverage lessons learned, making Emerson a global leader in valve repair, testing and service.

Our service facilities hold numerous industry stamps and certifications, including ASME UV, National Board, VR, provincial certifications in Canada and more.

Expertise

With skills and knowledge acquired over a century of experience, we can service a vast range of valves and controls products.

We also offer on-site valve repair, wellhead valve service, full-valve modifications and services from plant surveys and on-site relief valve testing to routine maintenance and repairs.

Availability

With direct access to a worldwide system of local, ready-to-deliver inventory, our global network of expert service technicians and manufacturing facilities ensures that you have instant access to the service you need, when and where you need it.

Services

- Pressure relief valve repair.
- Line valve repair
 - Gate valve Butterfly valve
 - Globe valve Control valve
 - Check valve Plug valve
 - Ball valve
- Pump protection valve repair.
- Tank vent repair.
- In-line valve testing and repair Section I and Section VIII applications.
- 24/7 repair and field service support.
- Mobile units.
- Valve and inventory management.
- Training.
- Steam trap surveys/repairs.
- Actuation and control repair/calibration.
- Wellhead valve service.
- Valve modification services.

eDge™ asset management software

- Simplifies the task of tracking valves.
- Helps you plan efficiently for future
- maintenance outages.
- Live internet access.
- Tracks your valves through the repair process.
- Stores images and pictures so you can see damaged valve parts first hand.
- Stores your specific notes or comments.
- Provides permanent document storage.